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Prerequisites and Related Documentation
The purpose of this document is to guide you in the development of a custom 
embedded target for use with Real-Time Workshop Embedded Coder. This 
document identifies requirements, implementation tasks, and implementation 
details for target creation.

Custom target creation is a topic for advanced users of Real-Time Workshop® 
and Real-Time Workshop Embedded Coder. “What You Need to Know” on 
page 1-2 summarizes the prerequisite experience level assumed for readers of 
this document.

This document supplements information contained in other documentation 
provided for Real-Time Workshop and Real-Time Workshop Embedded Coder. 
See “Prerequisites and Related Documentation” on page 1-2 for sources of 
additional information related to embedded target development.

What You Need to Know
This document assumes you are experienced with MATLAB®, Simulink®, 
Real-Time Workshop, and the Real-Time Workshop Embedded Coder.

This document assumes that you will be developing a target based on the 
Embedded Real-Time (ERT) target that is included in the Real-Time Workshop 
Embedded Coder version 4.0. The target features and technologies described in 
this document are subject to change in future releases of the Real-Time 
Workshop Embedded Coder.

You should be familiar with the following products and their documentation 
before reading this document:

• MATLAB and M-file programming

• Simulink

• Real-Time Workshop and its code generation and build process

• Real-Time Workshop Embedded Coder

• The Real-Time Workshop Target Language Compiler (TLC)

• Familiarity with Stateflow® may be helpful, but is not required.
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Related Documentation
• Real-Time Workshop Embedded Coder documentation: You should be 

thoroughly familiar with this detailed documentation of Real-Time 
Workshop Embedded Coder and the ERT target. Important topics covered 
include ERT model execution, timing, and task management; how to 
interface to and call model code; and default ERT code generation options.

• Real-Time Workshop Getting Started documentation: General introduction 
to the Real-Time Workshop. The sections “Basic Real-Time Workshop 
Concepts” and “Building an Application” include high-level overview 
information of essential target files and the build process.

• Real-Time Workshop documentation: This detailed documentation of the 
Real-Time Workshop covers several topics of interest to some target 
developers:

- Inlining and code generation issues relevant to device drivers and other 
S-functions

- Interfacing signals and parameters within generated code to your own 
code

- Combining code generated from multiple models into a single system

- Implementing external mode communication via your own low-level 
protocol layer

• Target Language Compiler Reference Guide documentation: A working 
knowledge of TLC is needed if you intend to make nontrivial modifications to 
your system target file, use TLC hooks into the build process, utilize 
information from the model.rtw file, implement inlined device drivers, or 
pass information into or out of the TLC phase of the build process. 
Minimally, you should work through the introductory sections, including “A 
TLC Tutorial.”

• Writing S-Functions documentation: Familiarity with writing fully inlined 
S-functions is required if you intend to develop device driver blocks for your 
target. “Building S-Functions Automatically” documents the S-Function 
Builder.
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Embedded Target Implementations to Study
You should also consider getting familiar with the documentation for the 
following targets. If you do not have a license for a product of interest, you can 
gain access to the documentation from the MathWorks Web site.

• Embedded Target for TI C6000TM DSP

• Embedded Target for Motorola® MPC555

• Embedded Target for OSEK/VDX® 

• Embedded Target for Infineon C166® Microcontrollers

• Embedded Target for Motorola® HC12

• Embedded Target for TI C2000TM DSP
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Introduction
The targets bundled with Real-Time Workshop are suitable for many different 
applications and development environments. Third-party targets provide 
additional versatility. However, you might want to implement a custom target 
for any of the following reasons:

• To enable end users to generate executable production code for a specific 
CPU or development board, using a specific development environment 
(compiler/linker/debugger).

• To support I/O devices on the target hardware by incorporating custom 
device driver blocks into your models.

• To configure the build process for a special compiler (such as a cross-compiler 
for an embedded microcontroller or DSP board) or development/debugging 
environment.

The Real-Time Workshop Embedded Coder provides a point of departure for 
the creation of custom embedded targets, for the basic purposes above. This 
manual covers the tasks and techniques you need to implement a custom 
embedded target.
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Types of Targets
Before considering the specific components, features, and capabilities that 
should be included in an embedded target, let’s consider several types of 
targets intended for different use cases.

The target types discussed below are not mutually exclusive. A given embedded 
target can support more than one of these use cases, or additional uses not 
outlined here. Also, there is a progression of capabilities from the first 
(baseline) to second (turnkey production) target types; you may want to 
implement an initial baseline target and a following, more full-featured 
turnkey version of a target.

The discussion of target types is followed by “Recommended Features for 
Embedded Targets” on page 2-5, which contains a suggested list of target 
features and general guidelines for embedded target development.

Baseline Targets
A baseline target offers a starting point for targeting a production processor. A 
baseline target integrates Real-Time Workshop Embedded Coder with one or 
more popular cross-development environments (compiler/linker/debugger tool 
chains). A baseline target provides a starting point from which you can 
customize the target for application needs. 

Target files provided for this type of target should be readable, easy to 
understand, and fully commented and documented. Specific attention should 
be paid to the interface to the intended cross-development environment. This 
interface should be implemented using the preferred approach for that 
particular development system. For example, some development environments 
use traditional make utilities, while others are based on project-file builds that 
can be automated under control of Real-Time Workshop.

When you use a baseline target, you need to include your own device driver and 
legacy code and modify linker memory maps to suit your needs. You should be 
familiar with the targeted development system.

Turnkey Production Targets
A turnkey production target also targets a production processor, but includes 
the capability to create target executables that interact immediately with the 
external world. In general, ease of use is more important than simplicity or 
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readability of the target files, because it is assumed that you do not want or 
need to modify these files.

Desirable features for a turnkey production target include

• Significant I/O driver support provided out of the box

• Easy downloading of generated standalone executables with third-party 
debuggers

• User-controlled placement of an executable in FLASH or RAM memory

• Support for target visibility and tuning

HIL Simulation Targets
A specialized use case is the generation of executables intended for use in 
Hardware-In-the-Loop (HIL) simulations. In a HIL simulation, parts of a pure 
simulation are gradually replaced with hardware components as components 
are refined and fabricated. HIL simulation offers an efficient design process 
that eliminates costly interations of part fabrication.

PIL Cosimulation Targets
Another specialized use case is the generation of executables intended for use 
in Processor-In-the-Loop (PIL) cosimulation. In a PIL cosimulation, a 
subsystem runs on target hardware, but within the context of a Simulink 
simulation. Cosimulation can be useful for validation of generated code and in 
validating the target compiler/processor environment at the subsystem unit 
level.
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Recommended Features for Embedded Targets
This section gives a suggested list of target features and general guidelines for 
embedded target development.

Basic Target Features

• Targets should be based on the Embedded Real-Time (ERT) target that is 
included in the Real-Time Workshop Embedded Coder. The features 
documented in this guide are available in Real-Time Workshop Embedded 
Coder Version 4.0.

Since your target is based on the ERT target, it should use that target’s 
Embedded-C code format, and should inherit the options defined in the ERT 
target’s system target file. By following these recommendations, you ensure 
that your target has all the production code generation capabilities of the 
ERT target.

See Chapter 5, “System Target Files” for further details on the inheritance 
mechanism, setting the code format, and other details.

• The most fundamental requirement for an embedded target is that it 
generate a real-time executable from a model or subsystem. Typically, an 
embedded target generates a timer interrupt-based, bare-board executable 
(although targets can be developed for an operating system environment as 
well). 

Your target should support the Real-Time Workshop concepts of 
singletasking and multitasking solver modes for model execution. Tasking 
support comes almost “for free” with the ERT target, but you should 
thoroughly understand how it works before implementing an ERT-based 
target.

Implementation of timer interrupt-based execution is documented in “Data 
Structures and Program Execution” of the Real-Time Workshop Embedded 
Coder documentation.

• You should generate the target executable’s main program module, rather 
than using a static main module (such as the static ert_main.c module 
provided with Real-Time Workshop Embedded Coder). A generated main.c 
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can be made much more readable and more efficient, since it omits 
preprocessor checks and other extra code.

See the Real-Time Workshop Embedded Coder documentation. for 
information on generated and static main program modules.

• You should use the target preferences mechanism (see Chapter 8, “Using 
Target Preferences”) to store and configure information about the 
development environment a user selects and other persistent data associated 
with your target.

• Follow the guidelines in Chapter 4, “Target Directories, Paths, and Files” to 
set up a file and directory structure that is consistent with other targets. 
Consistency between different targets is important and reduces the effort 
required to create and understand a target.

Integration with Target Development Environments

• Most cross-development systems run under a Windows PC host. Your target 
should support Windows NT, 2000 or XP as the host environment.

Some cross-development systems support one or more versions of UNIX, 
allowing for UNIX host support as well.

• Your embedded target must support at least one embedded development 
environment. The interface to a development environment can take one of 
several forms. The most common approach is to use a template makefile to 
generate standard makefiles with the make utility provided with your 
development environment. Chapter 6, “Template Makefiles” describes the 
structure of template makefiles.

Another approach with IDE-based tools is project file creation and/or 
Windows Component Object Model (COM) automation.

It is important to consider the license requirements and restrictions of the 
development environment vendor. You may need to modify files provided by 
the vendor and ship them as part of the embedded target.

See Chapter 9, “Interfacing to Development Tools” for further information.
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Observing Execution of Target Code

• Your target should support a mechanism you can use to observe the target 
code as it runs in real time (outside of a debugger).

One industry-standard approach is to use the CAN bus, with an ASAP2 file 
and CAN Calibration Protocol (CCP). There are several host-based graphical 
front-end tools available that connect to a CCP-enabled target and provide 
data viewing and parameter tuning. Supporting these tools requires 
implementation of CAN hardware drivers and CCP protocol for the target, 
as well as ASAP2 file generation. Your target can leverage the ASAP2 
support provided by Real-Time Workshop Embedded Coder.

Another option is to support Simulink External Mode over a serial interface 
(RS-232). See the Real-Time Workshop documentation for information on 
using the external mode API.

Deployment and Hardware Issues

• Device driver support is an important issue in the design of an embedded 
target. Device drivers are Simulink blocks that support either hardware I/O 
capabilities of the target CPU, or I/O features of the development board. 

If you are developing a baseline target, consider providing minimal driver 
support, on the assumption that end users develop their own drivers. If you 
are developing a turnkey production target, you should provide full driver 
support. See Chapter 10, “Developing Device Drivers for Embedded Targets” 
for a detailed discussion of device drivers.

• Automatic download of generated code to the target hardware makes a 
target easier to use. Typically a debugger utility is used; if the chosen 
debugger supports command script files, this can be straightforward to 
implement. “STF_make_rtw_hook.m” on page 4-12 describes a mechanism 
to execute M-code from the build process. You can use this mechanism to 
make system() calls to invoke utilities such as a debugger. You can invoke 
other simple downloading utilities in a similar fashion.

If your development system supports COM automation, you can control the 
download process by that mechanism. Using COM automation is discussed 
in Chapter 9, “Interfacing to Development Tools.”

• Executables that are mapped to RAM memory are typical. You can provide 
optional support for FLASH or RAM placement of the executable by using 
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your target’s code generation options. To support this capability, you might 
need multiple linker command files, multiple debugger scripts, and possibly 
multiple makefiles or project files. The ability to automatically switch 
between these files, depending on the RAM/FLASH option value, is also 
needed.

• Select a popular, widely available evaluation or prototype board for your 
target processor. Consider enclosed and ruggedized versions of the target 
board. Also consider board level support for the various on-chip I/O 
capabilities of the target CPU, and the availability of development systems 
that support the selected board.
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Components of a Custom Target
The components of a custom target are files located in a hierarchy of 
directories. The top-level directory in this structure is called the target root 
directory. The target root directory and its contents are named, organized, and 
located on the MATLAB path according to conventions described in Chapter 4, 
“Target Directories, Paths, and Files.”

The components of a custom target include

• Code components: C source code that supervises and supports execution of 
generated model code.

• Control files:

- A system target file (STF) to control the code generation process.

- File(s) to control the building of an executable from the generated code. In 
a traditional make-based environment, a template makefile (TMF) 
generates a makefile for this purpose. Another approach is to generate 
project files in support of a modern integrated development environment 
(IDE) such as Metrowerks CodeWarrior.

- Hook files: Optional TLC and M-files that can be invoked at well-defined 
stages of the build process. Hook files let you customize the build process 
and communicate information between various phases of the process.

• Target preferences files: These files define a target preferences class 
associated with your target. Your target preference class lets you create data 
objects that define and store properties associated with your target. For 
example, you may want to store a user-defined path to a cross-compiler that 
is invoked by the build process. The target preferences mechanism is 
described in Chapter 8, “Using Target Preferences”.

• Other target files: Files that let you integrate your target into the MATLAB 
environment. For example, you can provide an info.xml file to make your 
target block libraries, demos, and target preferences available from the 
MATLAB Start menu.

The next sections introduce key concepts and terminology you need to know to 
develop each component. References to more detailed information sources are 
provided.
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Code Components
A Real-Time Workshop program containing code generated from a Simulink 
model consists of a number of code modules and data structures. These fall into 
two categories.

Application Components
Application components are those which are specific to a particular model; they 
implement the functions represented by the blocks in the model. Application 
components are not specific to the target. Application components include

• Modules generated from the model

• User-written blocks (S-functions)

• Parameters of the model that are visible, and can be interfaced to, external 
code

Run-Time Interface Components
A number of code modules and data structures, referred to collectively as the 
run-time interface, are responsible for managing and supporting the execution 
of the generated program. The run-time interface modules are not 
automatically generated. Depending on the requirements of your target, you 
must implement certain parts of the run-time interface. Table 3-1 summarizes 
the run-time interface components.

Table 3-1:  Run-Time Interface Components 

You Provide... Real-Time Workshop Provides...

Customized main program Generic main program

Timer interrupt handler to 
run model

Execution engine and integration 
solver (called by timer interrupt 
handler)

Other interrupt handlers Example interrupt handlers 
(Asynchronous Interrupt blocks)
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User-Written Run-Time Interface Code
Most of the run-time interface is provided by Real-Time Workshop. Depending 
on the requirements of your target, you must implement some or all of the 
following elements:

• A timer interrupt service routine (ISR). The timer runs at the program’s base 
sample rate. The timer ISR is responsible for operations that must be 
completed within a single clock period, such as computing the current output 
sample. The timer ISR usually calls the Real-Time Workshop-supplied 
function, rt_OneStep.

If you are targeting a real-time operating system (RTOS), your generated 
code usually executes under control of the timing and task management 
mechanisms provided by the RTOS. In this case, you may not have to 
implement a timer ISR.

• The main program. Your main program initializes the blocks in the model, 
installs the timer ISR, and executes a background task or loop. The timer 
periodically interrupts the main loop. If the main program is designed to run 
for a finite amount of time, it is also responsible for cleanup operations - such 
as memory deallocation and masking the timer interrupt - before 
terminating the program.

If you are targeting a real-time operating system (RTOS), your main 
program most likely spawns tasks (corresponding to the sample rates used 
in the model) whose execution is timed and controlled by the RTOS.

Your main program typically is based on the Real-Time Workshop 
Embedded Coder main program, ert_main.c. The Real-Time Workshop 
Embedded Coder documentation details the structure of the Real-Time 
Workshop Embedded Coder run-time interface and the execution of 
Real-Time Workshop Embedded Coder code, and provides guidelines for 
customizing ert_main.c. 

Device drivers Example device drivers

Data logging, parameter 
tuning, signal monitoring, 
and external mode support

Data logging, parameter tuning, 
signal monitoring, and external mode 
APIs

Table 3-1:  Run-Time Interface Components  (Continued)

You Provide... Real-Time Workshop Provides...
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• Device drivers. Drivers communicate with I/O devices on your target 
hardware. In production code, device drivers are normally implemented as 
inlined S-functions.

• Other interrupt handlers. If your models need to support asynchronous 
events, such as hardware generated interrupts and asynchronous read and 
write operations, you must supply interrupt handlers. The Real-Time 
Workshop Interrupt Templates library provides examples.

• Data logging, parameter tuning, signal monitoring, and external mode 
support. It is atypical to implement rapid prototyping features such as 
external mode support in an embedded target. However, it is possible to 
support these features by using standard APIs provided by the Real-Time 
Workshop. See the Real-Time Workshop documentation for details.

Control Files
The code generation and build process is directed by a number of TLC and 
M-files collectively called control files. This section introduces and summarizes 
the main control files.

Top-Level Control File (make_rtw)
The build process is initiated when you click Build (or type Ctrl+B). At this 
point, Real-Time Workshop parses the Make command field of the Real-Time 
Workshop target configuration pane, expecting to find the name of a top-level 
M-file command that controls the build process (as well as optional arguments 
to that command). The default top-level control file for the build process is 
make_rtw.m.

Normally, target developers do not need detailed knowledge of how make_rtw 
works. (The details that are necessary to target developers are described in 
“Understanding and Using the Build Process” on page 3–8.) You should not 
customize make_rtw.m. The make_rtw.m file contains all the logic required to 
execute your target-specific control files, including a number of hook points for 
execution of your custom code.

make_rtw does the following:

• Passes optional arguments in to the build process

• Performs any required preprocessing before code generation
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• Executes the STF to perform code generation (and optional HTML report 
generation)

• Processes the TMF to generate a makefile

• Invokes a make utility to execute the makefile and build an executable

• Performs any required post-processing (such as generating calibration data 
files or downloading the generated executable to the target)

System Target File (STF)
The Target Language Compiler (TLC) generates target-specific C code from an 
intermediate description of your Simulink block diagram (model.rtw). The 
Target Language Compiler reads model.rtw and executes a program 
consisting of several target files (.tlc files.) The STF, at the top level of this 
program, controls the code generation process. The output of this process is a 
number of source files, which are fed to your development system’s make 
utility.

You need to create a customized STF to set code generation parameters for 
your target. You should copy, rename, and modify the standard ERT system 
target file (matlabroot/rtw/c/ert/ert.tlc).

The detailed structure of the STF is described in Chapter 5, “System Target 
Files.”

Template Makefile (TMF)
A TMF provides information about your model and your development system. 
Real-Time Workshop uses this information to create an appropriate makefile 
(.mk file) to build an executable program.

Some targets implement more than one TMF, in order to support multiple 
development environments (for example, two or more cross-compilers) or 
multiple modes of code generation (for example, generating a binary executable 
vs. generating a project file for your compiler).

The Real-Time Workshop Embedded Coder provides a large number of TMFs 
suitable for different types of host-based development systems. These TMFs 
are located in matlabroot/rtw/c/ert. The standard TMFs are described in the 
“Template Makefiles and Make Options” section of the Real-Time Workshop 
documentation.
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The detailed structure of the TMF is described in Chapter 6, “Template 
Makefiles.”

Hook Files
The Real-Time Workshop build process allows you to supply optional hook files 
that are executed at specified points in the code generation and make process. 
You can use hook files to add target-specific actions to the build process.

To ensure that hook files are called correctly by the build process, they must 
follow well-defined naming and location requirements. Chapter 4, “Target 
Directories, Paths, and Files” describes these requirements.
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Understanding and Using the Build Process
To develop an embedded target, you need a thorough understanding of the 
Real-Time Workshop build process. Your embedded target uses the build 
process and may require you to modify or customize the process. A general 
overview of the build process is given in the Real-Time Workshop Getting 
Started documentation in the “Building an Application” section.

This section supplements that overview with a detailed flowchart of the build 
process as implemented by the Real-Time Workshop Embedded Coder. The 
emphasis is on points in the process where customization hooks are available 
and on passing information between different phases of the process. 

This section concludes with “Additional Information Passing Techniques” on 
page 3-16, describing assorted tips and tricks for passing information during 
the build process.

Build Process Phases and Information Passing
It is important to understand where (and when) the build process obtains 
required information. Sources of information include

• The model.rtw file, which provides information about the generating model. 
All information in model.rtw is available to target TLC files.

• The Real-Time Workshop related panes of the Configuration Parameters 
dialog. Options (both general and target-specific) are provided through check 
boxes, menus, and edit fields. You can associate options with TLC variables 
and makefile tokens in the rtwoptions data structure.

• The target preferences data. Target preferences provide persistent 
information about the target, such as the location of your development tools.

• The TMF, which generates the model-specific makefile.

• Environment variables on the host computer. Environment variables 
provide additional information about installed development tools.

• Other target-specific files such as target-related TLC files, linker command 
files, or project files.

It is also important to understand the several phases of the build process and 
how to pass information between the phases. The build process comprises 
several high-level phases:
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• Execution of the top-level M-file (make_rtw.m) to sequence through the build 
process for a target

• Conversion of the model into the TLC input file (model.rtw)

• Generation of the target code by the TLC compiler

• Compilation of the generated code with make or other utilities

• Transmission of the final generated executable to the target hardware with 
a debugger or download utility

It is helpful to think of each phase of the process as a different “environment” 
that maintains its own data. These environments include

• M-code execution environment (MATLAB)

• Simulink

• Target Language Compiler execution environment

• makefile

• Development environments such as and IDE or debugger

In each environment, information may be needed from the various sources 
mentioned above. For example, during the TLC phase, it may be necessary to 
execute an M-file to obtain information from the MATLAB environment. Also, 
a given phase may generate information that is needed in a subsequent phase.

Build Process Flowchart
The following flowcharts detail the build process as a sequence of actions that 
execute within several environments:

• Figure 3-1 on page 3-13 depicts the initial M-code execution phase.

• Figure 3-2 on page 3-13 depicts the Simulink model compilation phase and 
M-code execution following it.

• Figure 3-3 on page 3-14 depicts the main TLC code generation phase and 
M-code execution following it.

• Figure 3-4 on page 3-15 depicts the final M-code, model.bat, and make 
phase.

In the flowcharts, bold rectangles and oval balloons indicate points where 
different environments can interact by using hooks or other mechanisms for 
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information passing. See “Files in the Target Directory” on page 4-10 for 
details on the available M-file and TLC hooks, with code examples.
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make_rtw (buildArgs)

Invoked with Ctrl+B, Build 
button/menu, or rtwbuild('model')

Hook for target-specific M-code 

Get STF name from Real-Time 
Workshop GUI

Call STF_make_rtw_hook 
('entry',modelName,[],[],[],buildArgs) 
if it exists. Otherwise, display “Starting RTW 
Build Procedure...” message.

Get user-selected options from Real-Time Workshop GUI

MATLAB Command Window brought forward

Call Stateflow to generate chart and 
machine code under sfprj directory (as 
*.tlc and *.tlh)

Call STF_make_rtw_hook 
('before_tlc',modelName,[],[],[],buildArg
s) if it exists.

Hook for target-specific M-code

Continue to Simulink Environment 
flowchart (Figure 3-2)

Get TMF name or run specified M-file to get TMF name Hook for target-specific M-code to 
select TMF
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Figure 3-1:  MATLAB Environment for Build Process

Figure 3-2:  Simulink and M-Code Environment for Build Process

Target-specific model based actions can be introduced.
Call into Simulink to generate model.rtw 
file. Model compilation triggers block mask 
and parameter evaluation.

Delete *.c and *.h files in build directory.

Invoke Target Language Compiler with STF, 
model.rtw and rtwOptions as command line 
arguments.

Continue to TLC Environment 
flowchart 1 (Figure 3-3)
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Figure 3-3:  TLC and M-Code Environment Flowchart

Target-specific TLC code can be introduced.
mytarget_settings.tlc mechanism allows 
setting up additional TLC variables and 
information.

%include "codegenentry.tlc" directive in 
STF initiates code generation.

CodeTemplate mechanism in STF can replace 
backend main.c code generation.

Target-specific main program module can be generated.

Optional HTML report generation

Run c_indent utility on generated .c, .h files

Create MODULES list to include *.c files from 
build directory

Finish HTML report generation (if selected) 
by procession generated .c, .h files into 
HTML

Continue to M-Code Environment flowchart (Figure 3-4)

mytarget_genfiles.tlc mechanism allows 
generation of additional files for debuggers, 
and so on. mytarget_genfiles.tlc 
mechanism also allows export of 
TLC-generated information into MATLAB for 
later M-code processing with FEVAL.

Target-specific files can be generated and 
information can be exported to MATLAB.
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Figure 3-4:  M-Code, model.bat, and Makefile Environment Flowchart 

Read TMF file, process |>name<| tokens

 If Generate Code Only selected, skip to exit hook.

Set success indicator to BUILD_SUCCESS if defined in 
TMF; if not defined, use default ('### Created')

Invoke model.bat file. Check STDOUT for 
success string when control returns.

Hook for target-specific M-code 
Call STF_make_rtw_hook 
('before_make',modelName,[matlabroot,'\rtw',
templateMakeFile,buildOpts,buildArgs) if it exists.

M-code hook generates target-specific 
model.bat.

Call STF_wrap_make_cmd.m if it exists. Otherwise use 
MAKECMD line in TMF to select default compiler and 
generate default model.bat.

Target-specific build success string

M-code hook to invoke downloads or 
other target-specific utilities

Call STF_make_rtw_hook 
('exit',modelName,[matlabroot,'\rtw',
templateMakeFile,buildOpts,buildArgs) if it exists

makevariables expanded (see “makevariable Field in 
rtwoptions Structure”)

 Read all rtwmakecfg.m files, expand 
includes, libs, rules and generate model.mk 

Block-specific build support with the rtwmakecfg function 
(See “Using rtwmakecfg Files to Customize the Makefile”)
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Additional Information Passing Techniques
This section describes a number of useful techniques for passing information 
among different phases of the build process.

tlcvariable Field in rtwoptions Structure
Options on the Real-Time Workshop related panes of the Configuration 
Parameters dialog can be associated with a TLC variable, and specified in the 
tlcvariable field of the option’s entry in the rtwoptions structure. The 
variable value is passed on the command line when TLC is invoked. This 
provides another way to make Real-Time Workshop options and their values 
available in the TLC phase.

See “System Target File Structure” on page 5-4 for further information.

makevariable Field in rtwoptions Structure
Similarly, Real-Time Workshop options can be associated with a template 
makefile token, specified in the makevariable field of the option’s entry in the 
rtwoptions structure. If a token of the same name as the makevariable name 
exists in the TMF, the token is updated with the option value when the final 
makefile is created. If the token does not exist in the TMF, the makevariable 
is passed in on the command line when make is invoked. Thus, in either case, 
the makevariable is available to the makefile.

See “System Target File Structure” on page 5-4 for further information.

Accessing Host Environment Variables
You can access host shell environment variables from MATLAB by entering the 
getenv command. For example:

getenv ('MSDEVDIR')

ans =

D:\Applications\Microsoft Visual Studio\Common\MSDev98

To access the same information from TLC, use the FEVAL directive to invoke 
getenv. 

%assign eVar = FEVAL("getenv", "<varname>").
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Supplying Development Environment Information
to Your Template Makefile
An embedded target must tie the build process to target-specific development 
tools installed on a host computer. For the make process to run these tools 
correctly, the TMF must be able to determine the name of the tools, the path to 
the compiler, linker, and other utilities, and possibly the host operating system 
environment variable settings. This section describes two techniques for 
supplying this information.

The simpler, more traditional approach is to require the end user to modify the 
target TMF. The user enters path information (such as the location of a 
compiler executable), and possibly host operating system environment 
variables, as make variables. This allows the TMF to be tailored to specific 
needs.

This approach is not satisfactory in an environment where MATLAB is 
installed on a network and multiple users share read-only TMFs. Another 
possible drawback to this approach is that the tool information is only available 
during the makefile processing phase of the build process.

A second approach is to use the target preferences feature (see Chapter 8, 
“Using Target Preferences”) together with the wrap_make_cmd_hook 
mechanism (see “The _wrap_make_cmd_hook Mechanism” on page 4-13). In 
this approach, compiler and other tool path information is stored as 
preferences data, which is obtained by the STF_wrap_make_cmd_hook.m file. 
This allows tool path information to be saved separately for each user.

Another advantage to the second approach is that target preferences data is 
available to all phases of the build process, including the TLC phase. This 
information may be required to support features such as RAM/ROM profiling.

Using MATLAB Application Data
Application data provides a way for applications to save and retrieve data 
stored with the GUI. This technique enables you to create what is essentially 
a user-defined property for an object, and use this property to store data for use 
in the build process. If you are unfamiliar with this technique, see the 
“Application Data” section of the MATLAB documentation.

The following code examples illustrates the use of application data to pass 
information to TLC.
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This M-file, tlc2appdata.m, stores the data passed in as application data 
under the name passed in (appDataName).

function k = tlc2appdata(appDataName, data)
disp([mfilename,': ',appDataName,' ', data]);
setappdata(0,appDataName,data);
k = 0;  % TLC expects a return value for FEVAL.

The following sample TLC file uses the FEVAL directive to invoke 
tlc2appdata.m to store arbitrary application data, under the name z80.

%% test.tlc
%%
%assign myApp = "z80"
%assign myData = "314159"
%assign dummy = FEVAL("tlc2appdata",myApp,myData)

To test this technique:

1 Create the tlc2appdata.m M-file as shown. Make sure that tlc2appdata.m 
is stored in a directory on the MATLAB path.

2 Create the TLC file as shown. Save it as test.tlc.

3 Enter the following command at the MATLAB prompt to execute the TLC 
file:

tlc test.tlc

4 Get the application data at the MATLAB prompt:

k = getappdata(0,'z80')

MATLAB returns the value 314159.

5 Enter the following command.

who

Note that application data is not stored in the MATLAB workspace. Also 
observe that the z80 data is not visible. Using application data in this way 
has the advantage that it does not corrupt the MATLAB workspace. Also, it 
helps prevent you from accidently deleting your data, since it is not stored 
directly in the your workspace.
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A real-world use of application data might be to collect information from the 
model.rtw file and store it for use later in the build process.

Adding Block-Specific Information to the Makefile
The rtwmakecfg mechanism provides a method for inlined S-functions such as 
driver blocks to add information to the makefile. This mechanism is described 
in “Using rtwmakecfg Files to Customize the Makefile” on page 6-13.



3 Target Development Mechanics

3-20



 

4
Target Directories, Paths, 
and Files

Introduction (p. 4-2) Motivation and overview of this section.

Directory and File Naming 
Conventions (p. 4-3)

Requirements and recommendations for naming your 
target directories and files.

Target Directory Structure and 
MATLAB Path (p. 4-4)

Structure and location of target directories.

Target Directories and Files (p. 4-6) Content and usage of target directories and files.

Files in the Target Directory (p. 4-10) Detailed coverage of key target files, including 
customization hooks.

Additional Directories and Files for 
Externally Developed Targets (p. 4-17)

Information for external (not MathWorks) target 
developers



4 Target Directories, Paths, and Files

4-2

Introduction
Your initial tasks in setting up an embedded target are

• Create a target directory structure

• Include desired directories in the MATLAB path

• Create the required target files and locate them in your target directories. In 
some cases you modify files provided by the Real-Time Workshop Embedded 
Coder.

The following sections explain how to organize your target directories and files 
and add them to the your MATLAB path. They also provide high-level 
descriptions of the files to be stored in each directory of the structure.

You should follow the conventions described. By doing so, you can make your 
embedded targets consistent, easy to understand, and efficient. The 
conventions in this section provide guidelines for the root target directory and 
key directories immediately under it. You can, of course, define further 
subdirectories if your target is complex or if you need a more modular 
structure.
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Directory and File Naming Conventions
For an actual target implementation, the recommended directory and file 
naming conventions are 

• Use the name of the target processor (for example, hc12 or c166) or operating 
system (for example, osek).

• For subdirectories containing files associated with specific development 
environments or tools, use the name of the tool (for example, codewarrior).

• Use lower case only.

• Do not embed spaces in directory names. Spaces in directory names cause 
errors with many third-party development environments.

In this document, mytarget is a placeholder name that represents directories 
and files that use the target’s name. The names dev_tool1, dev_tool2... 
represent subdirectories containing files associated with development 
environments or tools.
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Target Directory Structure and MATLAB Path
You should create a directory structure like that shown in Figure 4-1 for your 
target files. The top-level directory in this structure, mytarget, is the target 
root directory.

Figure 4-1:  Recommended Target Directory Structure

The contents of the target root directory and its subdirectories (as well as 
optional additional directories) are discussed in “Target Directories and Files” 
on page 4–6.

Adding Target Directories to the MATLAB Path
The directories shown in Figure 4-1 must be added to the MATLAB path.

The directories labeled dev_tool1, dev_tool2 in Figure 4-1 contain files 
associated with specific development environments or tools (dev_tool1, 
dev_tool2...) that are supported by your target. 

Location of Target Directories
Note carefully the following rules for locating your target directories:

• For embedded targets developed by The MathWorks that are installed with 
MATLAB, the target root directory should be located under 
matlabroot/toolbox/rtw/targets/.

mytarget

mytarget

blocks

dev_tool1

dev_tool2

These directories must be added to the 
MATLAB path.
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• For embedded targets not developed by The MathWorks, the target root 
directory should not be located anywhere in the MATLAB directory tree (that 
is, in or under the matlabroot directory). The reason for this restriction is 
that if you install a new version of MATLAB, (or reinstall your current 
version) the MATLAB directories are recreated. This process deletes any 
custom target directories existing within the MATLAB tree.
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Target Directories and Files

Target Root Directory (mytarget)
This directory contains the key subdirectories for the target (see Figure 4-1). 
You can also locate miscellaneous files (such as a readme file) in the target root 
directory. The following sections describe required and optional subdirectories 
and their contents.

Target Directory (mytarget/mytarget)
This directory contains files that are central to the target, such as the system 
target file (STF) and template makefile (TMF). “Files in the Target Directory” 
on page 4–10 Summarizes the files that should be stored in 
mytarget/mytarget, and provides pointers to detailed information about these 
files.

Note  mytarget/mytarget should be on the MATLAB path.

Target Block Directory (mytarget/blocks)
If your target includes device drivers or other blocks, locate the block 
implementation files in this directory. mytarget/blocks contains

• Compiled block MEX- files

• Source code for the blocks

• TLC inlining files for the blocks

• Library models for the blocks (if you provide your blocks in one or more 
libraries)

Note  mytarget/blocks should be on the MATLAB path.

You can also store demo models and any supporting M-files in 
mytarget/blocks. Alternatively, you can create a mytarget/mytargetdemos 
directory, which should also be on the MATLAB path.
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To display your blocks in the standard Simulink Library Browser and/or 
integrate your demo models into the standard Demos page of the Help browser 
and Start button, you can create the files described below and store them in 
mytarget/blocks.

mytarget/blocks/slblocks.m
This file allows a group of blocks to be integrated into the Simulink Library and 
Simulink Library Browser.

Example slblocks.m File.

function blkStruct = slblocks
% Information for "Blocksets and Toolboxes" subsystem
blkStruct.Name = sprintf('Embedded Target\n for MYTARGET');
blkStruct.OpenFcn = 'mytargetlib';
blkStruct.MaskDisplay = 'disp(''MYTARGET'')';

% Information for Simulink Library Browser
Browser(1).Library = 'mytargetlib';
Browser(1).Name    = 'Embedded Target for MYTARGET';
Browser(1).IsFlat  = 1;% Is this library "flat" (i.e. no 
subsystems)?

blkStruct.Browser = Browser;

mytarget/blocks/demos.xml
This file provides information about the components, organization, and 
location of demo models. MATLAB uses this information to place the demo in 
the appropriate place in the Demos page of the Help browser and Start button.
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Example demos.xml File.

<?xml version="1.0" encoding="utf-8"?>
<demos>
   <name>Embedded Target for MYTARGET</name>
   <type>simulink</type>
   <icon>$toolbox/matlab/icons/boardicon.gif</icon>
   <description source = "file">mytarget_overview.html</description>
   
   <demosection>
      <label>Multirate model</label>
      <demoitem>
         <label>MYTARGET demo</label>
         <file>mytarget_overview.html</file>
         <callback>mytarget_model</callback>
      </demoitem>
   </demosection>

</demos>

Development Tools Directory (mytarget/dev_tool1,
mytarget/dev_tool2)
These directories contain files associated with specific development 
environments or tools (dev_tool1,dev_tool2...). Normally, your target 
supports at least one such development environment and invokes its compiler, 
linker, and other utilities during the build process. mytarget/dev_tool1 
includes linker command files, startup code, hook functions, and any other files 
required to support this process.

For each development environment, you should provide a separate directory.

You should use the target preferences mechanism (see Chapter 8, “Using 
Target Preferences”) to store information about a user’s choice of development 
environment or tool, paths to the installed development tools, and so on. Using 
target preferences data in this way lets your build process code select the 
appropriate development environment and invoke the appropriate compiler 
and other utilities. See the code excerpt in “mytarget_default_tmf.m Example 
Code” on page 6-11 for an example of how to use target preferences data for this 
purpose.
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Target Preferences Directory 
(mytarget/mytarget/@mytarget)
If you create a target preferences class to store information about user 
preferences, you should store data class definition files and other files that 
support your target-specific preferences in mytarget/mytarget/@mytarget. 
The Simulink Data Class Designer creates the @mytarget directory 
automatically within the parent directory. See Chapter 8, “Using Target 
Preferences” for further information.

Target Source Code Directory (mytarget/src)
This directory is optional. If the complexity of your target requires it, you can 
use mytarget/src to store any common source code and configuration code 
(such as boot and startup code).
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Files in the Target Directory
The target directory mytarget/mytarget contains key files in your target 
implementation. These include the system target file, template makefile, main 
program module, and optional M and TLC hook files that let you add 
target-specific actions to the build process.

mytarget.tlc
mytarget.tlc is the system target file (STF). Functions of the STF include

• Making the target visible in the System Target File Browser

• Definition of code generation options for the target (inherited and 
target-specific)

• Providing an entry point for the top-level control of the TLC code generation 
process.

You should base your STF on ert.tlc, the STF provided by Real-Time 
Workshop Embedded Coder.

Chapter 5, “System Target Files” gives detailed information on the structure of 
the STF, and also gives instructions on how to customize an STF to:

• Display your target in the System Target File Browser

• Add your own target options to the Configuration Parameters dialog

• Tailor the code generation and build process to the requirements of your 
target

mytarget.tmf
mytarget.tmf is the template makefile for building an executable for your 
target.

For basic information on the structure and operation of template makefiles, see 
Chapter 6, “Template Makefiles.”

If your target development environment requires automation of a modern 
integrated development environment (IDE) rather than use of a traditional 
make utility, see Chapter 9, “Interfacing to Development Tools.”

It is often necessary to create multiple template makefiles to support different 
development environments. See “Supporting Multiple Development 
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Environments” on page 5-33 and “mytarget_default_tmf.m Example Code” on 
page 6-11 for information.

mytarget_default_tmf.m
This file is optional. You can implement a mytarget_default_tmf.m file to 
select the correct template makefile, based on user preferences. See “Setting 
Up a Template Makefile” on page 6-10.

mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code 
generation environment. See “Using mytarget_settings.tlc” on page 5–28 for 
details.

mytarget_genfiles.tlc
This file is optional. mytarget_genfiles.tlc is useful as a central file from 
which to invoke any target-specific TLC files that generate additional files as 
part of your target build process. For example, your target may create 
sub-makefiles or project files for a development environment, or command 
scripts for a debugger to do automatic downloads. See “Using 
mytarget_genfiles.tlc” on page 5–31 for details.

mytarget_main.c
A main program module is required for your target. To provide a main module, 
you can either

• Modify the ert_main.c module provided by Real-Time Workshop Embedded 
Coder

• Generate mytarget_main.c during the build process

The “Data Structures and Program Execution” chapter of the Real-Time 
Workshop Embedded Coder documentation contains a detailed description of 
the operation of ert_main.c. The chapter also contains guidelines for 
generating and modifying a main program module.

The “Advanced Code Generation Features” chapter of the Real-Time Workshop 
Embedded Coder documentation describes how you can generate a customized 
main program module. 
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STF_make_rtw_hook.m
STF_make_rtw_hook.m is an optional hook file that you can use to invoke 
target-specific functions or executables at specified points in the build process. 
STF_make_rtw_hook.m implements a function that dispatches to a specific 
action dependending on the method argument that is passed into it.

The “Advanced Code Generation Features” section of the Real-Time Workshop 
Embedded Coder documentation describes the operation of the 
STF_make_rtw_hook.m hook file in detail.

STF_wrap_make_cmd_hook.m
Use this file to override the default Real-Time Workshop behavior for selecting 
the appropriate compiler tool to be used in the build process.

By default, the Real-Time Workshop build process is based on makefiles. On 
PC hosts, the build process creates model.bat, an MS-DOS batch file. 
model.bat sets up the appropriate environment variables for the compiler, 
linker and other utilities, and invokes a make utility. The batch file, model.bat, 
obtains the required environment variable settings from the MAKECMD field in 
the template makefile. The standard template makefiles supplied by 
Real-Time Workshop support only standard compilers that build executables 
on the host system.

When developing an embedded target, you often need to override these 
defaults. Typically, you need to support one or more target-specific 
cross-development systems, rather than supporting compilers for the host 
system. The STF_wrap_make_cmd_hook mechanism provides a way to set up an 
environment specific to an embedded development tool.

Note that the naming convention for this file is not based on the target name. 
It is based on the concatenation of the system target file name, STF, with the 
string '_wrap_make_cmd_hook'. 

For an example make command hook file, see
matlabroot/toolbox/rtw/rtw/wrap_make_cmd.m.

Stub makefiles. Many modern cross-development systems, such as Metrowerks 
CodeWarrior, are based on project files rather than makefiles. If the interface 
to the embedded development system is not makefile based, one recommended 
approach is to create a stub makefile. When the build process invokes the stub 
makefile, no action takes place.
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The _wrap_make_cmd_hook Mechanism. A recommended approach to supporting 
non-host-based development systems is to provide a hook file that is called 
instead of the default host-based compiler selection.

To do this, create a STF_wrap_make_cmd_hook.m file. If this file exists, the build 
process calls it instead of the default compiler selection process. Make sure 
that:

• The file is on the MATLAB path.

• The filename is the name of your STF, prepended to the string 
'__wrap_make_cmd_hook.m'.

• The hook function implemented in the file follows the function prototype 
shown in the code example below.

A typical approach would be to write a STF_wrap_make_cmd_hook.m file that 
creates a MS-DOS batch file (model.bat). The batch file first sets up 
environment variables for the embedded target development system. Then, it 
invokes the embedded target’s make utility on the generated makefile. The 
STF_wrap_make_cmd_hook function should return a system command that 
invokes model.bat.

This approach is shown in “Example STF_wrap_make_cmd_hook Function” on 
page 4-14.

Alternatively, any MS-DOS batch file can be created by 
STF_wrap_make_cmd_hook, and the function can return any command; it is not 
limited to model.bat. Like the exit case of the STF_make_rtw_hook.m 
mechanism, this provides the flexibility to invoke other utilities or 
applications. 

Note that on a PC host, Real-Time Workshop checks the standard output 
(STDOUT) for an appropriate build success string. By default, the string is

"### Created"

You can change this specifying a different BUILD_SUCCESS variable in the 
template makefile.
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Example STF_wrap_make_cmd_hook Function.
function makeCmdOut = stfname_wrap_make_cmd_hook(args)
  makeCmd        = args.makeCmd;
  modelName      = args.modelName;
  verbose        = args.verbose;
  
  % args.compilerEnvVal not used
  cmdFile = ['.\',modelName, '.bat'];
  cmdFileFid = fopen(cmdFile,'wt');
  if ~verbose
    fprintf(cmdFileFid, '@echo off\n');
  end
  
  try
    prefs = RTW.TargetPrefs.load('mytarget.prefs');
  catch
    error(lasterr);
  end
  
  fprintf(cmdFileFid, '@set TOOL_VAR1=%s\n', prefs.ImpPath);
  fprintf(cmdFileFid, '@set TOOL_VAR2=x86-win32\n');
  toolRoot = fullfile(prefs.ImpPath,'host','tool','4.4b');
  fprintf(cmdFileFid, '@set TOOL_VAR3=%s\n', toolRoot);
  path = getenv('Path');
  path1 = fullfile(prefs.ImpPath,'host','license;');
  if ~isempty(strfind(path,path1)) path1 = ''; end
  fprintf(cmdFileFid, '@set Path=%s%s%s\n', path1, path);
  fullMakeCmd = fullfile(prefs.ImpPath,'host','tool',...
                         'bin', makeCmd);
  fprintf(cmdFileFid, '%s\n', fullMakeCmd);
  fclose(cmdFileFid);
  makeCmdOut = cmdFile;

STF_rtw_info_hook.m (obsolete)
Prior to MATLAB release 14, custom targets supplied target-specific 
information with a hook file (referred to as STF_rtw_info_hook.m.) The 
STF_rtw_info_hook specified properties such as word sizes for integer data 
types (for example, char, short, int, and long), and C implementation-specific 
properties of the custom target. 

The STF_rtw_info_hook mechanism has been replaced by the Hardware 
Implementation pane of the Configuration Parameters dialog. Using this 
dialog, you can specify all properties that were formerly specified in your 
STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files continue to 
operate correctly. However, you should convert your target and models to use 
the Hardware Implementation pane. The simple conversion process is 
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described in the “Hook File Compatibility” section of the Real-Time Workshop 
6.0 Release Notes.

info.xml
This file provides information to MATLAB that specifies where to display the 
target toolbox on the MATLAB Start button menu.

Example info.xml File. This example shows you how to set up access to a target’s 
demo page and target preferences GUI from the MATLAB Start button. See 
also “Making Target Preferences Available to the End User” on page 8-11.

<productinfo>

<matlabrelease>13</matlabrelease>
<name>Embedded Target for MYTARGET</name>
<type>simulink</type>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>

<list>

<listitem>
<label>Demos</label>
<callback>demo simulink 'Embedded Target for MYTARGET'</callback>
<icon>$toolbox/matlab/icons/demoicon.gif</icon>
</listitem>

<listitem>
<label>MYTARGET Target Preferences</label>
<callback>mytargetTargetPrefs = 
RTW.TargetPrefs.load('mytarget.prefs'); 
gui(mytargetTargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

</list>
</productinfo>

mytarget_overview.html
By convention, this file serves as home page for the target demos.
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The <description> field in demos.xml should point to 
mytarget_overview.html (see “mytarget/blocks/demos.xml” on page 4-7).

Example mytarget_overview.html File.

<html>
<head><title>Embedded Target for MYTARGET</title></head><body>
<p style="color:#990000; font-weight:bold; font-size:x-large">Embedded Target 
for MYTARGET Demonstration Model</p>

<p>This demo provides a simple model that allows you to generate an executable
for a supported target board. You can then download and run the executable and
set breakpoints to study and monitor the execution behavior.</p>

</body>
</html>
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Additional Directories and Files
for Externally Developed Targets

If you are developing an embedded target that is not installed into the 
MATLAB tree, you should create the following within mytarget/mytarget, for 
the convenience of your users.

mytarget/mytarget/mytarget_setup.m
This M-file script adds the necessary paths for your target to the MATLAB 
path. Your documentation should instruct users to run the script when 
installing the target.

You should include a call to the MATLAB function savepath in your 
mytarget_setup.m script. This function saves the added paths, so users need 
to run mytarget_setup.m only once.

The following code is an example mytarget_setup.m file.

function mytarget_setup()
curpath = pwd;
tgtpath = curpath(1:end-length('\mytarget'));
addpath(fullfile(tgtpath, 'mytarget'));
addpath(fullfile(tgtpath, 'dev_tool1'));
addpath(fullfile(tgtpath, 'blocks'));
addpath(fullfile(tgtpath, 'mytargetdemos'));
savepath;
disp('MYTARGET Target Path Setup Complete.');

mytarget/mytarget/doc
You should put all documentation related to your target in the directory 
mytarget/mytarget/doc.
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Introduction
The system target file (STF) exerts overall control of the code generation stage 
of the build process. The STF also lets you control the presentation of your 
target to the end user. The STF provides

• Definitions of variables that are fundamental to the build process, such as 
code format to be generated

• The main entry point to the top-level TLC program that generates code

• Target information for display in the System Target File Browser

• A mechanism for defining target-specific code generation options (and other 
parameters affecting the build process) and for displaying them in the 
Configuration Parameters dialog

• A mechanism for inheriting options from another target (such as the 
Embedded Real-Time (ERT) target)

This chapter provides information on the structure of the STF, guidelines for 
customizing an STF, and a basic tutorial that helps you get a skeletal STF up 
and running.

Note that, although the STF is a Target Language Compiler (TLC) file, it 
contains embedded M-code. Before creating or modifying an STF, you should 
acquire a working knowledge of TLC and of the M language. The Target 
Language Compiler documentation and the “M-File Programming” section of 
the MATLAB documentation describe the features and syntax of both the TLC 
and MATLAB languages.

While reading this chapter, you may want to refer to the STFs provided with 
Real-Time Workshop. Most of these files are stored in the target-specific 
directories under matlabroot/rtw/c. Additional STFs are stored under 
matlabroot/toolbox/rtw/targets.
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System Target File Naming and Location Conventions
An STF must be located in a directory on the MATLAB path for the target to 
be properly displayed in the System Target File Browser and invoked in the 
build process. Follow the location and naming conventions for STFs and related 
target files given in Chapter 4, “Target Directories, Paths, and Files.”

Note  The rules for the location of target files differ, depending upon whether 
the target is internally developed at The MathWorks or not. 
Internally-developed targets that are installed with MATLAB are normally 
located in the MATLAB directory tree (that is, in or under the matlabroot 
directory). If you are an external target developer, your target root directory 
should not be located anywhere in the MATLAB directory tree. The reason for 
this restriction is that if you install a new version of MATLAB, (or reinstall 
your current version) the MATLAB directories are recreated. This process 
deletes any custom target directories existing within the MATLAB tree.
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System Target File Structure
This section is a guide to the structure and contents of an STF. The following 
listing shows the general structure of an STF. Note that this is not a complete 
code listing of an STF. The listing consists of excerpts from each of the sections 
that make up an STF.

%%----------------------------
%% Header Comments Section
%%----------------------------
%% SYSTLC: Example Real-Time Target
%%    TMF: my_target.tmf MAKE: make_rtw EXTMODE: ext_comm
%% Inital comments contain directives for STF Browser.
%% Documentation, date, copyright, and other info may follow.

.

.
%selectfile NULL_FILE

.

.
%%----------------------------
%% TLC Configuration Variables Section %%----------------------------
%% Assign code format, language, target type.
%%
%assign CodeFormat = "Embedded-C"
%assign TargetType = "RT"
%assign Language   = "C"
%%
%%----------------------------
%% (OPTIONAL) Import Target Settings 
%%----------------------------
%include "mytarget_settings.tlc"
%%
%%----------------------------
%% TLC Program Entry Point
%%----------------------------
%% Call entry point function.
%include "codegenentry.tlc"
%%
%%----------------------------
%% (OPTIONAL) Generate Files for Build Process
%%----------------------------
%include "mytarget_genfiles.tlc"
%%----------------------------
%% RTW_OPTIONS Section
%%----------------------------
/%
BEGIN_RTW_OPTIONS
%% Define rtwoptions structure array. This array defines target-specific
%% code generation variables, and controls how they are displayed.
rtwoptions(1).prompt = 'example code generation options';

.
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.
rtwoptions(6).prompt = 'Show eliminated statements';
rtwoptions(6).type = 'Checkbox';

.

.
%----------------------------------------%
% Configure RTW code generation settings %
%----------------------------------------%

.

.
%%----------------------------
%% rtwgensettings Structure
%%----------------------------
%% Define suffix string for naming build directory here.
rtwgensettings.BuildDirSuffix = '_mytarget_rtw'
%% (OPTIONAL) target inheritance declaration
rtwgensettings.DerivedFrom = 'ert.tlc';
%% (OPTIONAL) r14 callback compatibility declaration
rtwgensettings.Version = '1';
%% (OPTIONAL) other rtwGenSettings fields...

.

.
END_RTW_OPTIONS
%/
%%----------------------------
%% targetComponentClass - MATHWORKS INTERNAL USE ONLY
%% REMOVE NEXT SECTION FROM USER_DEFINED CUSTOM TARGETS
%%----------------------------
/%
BEGIN_CONFIGSET_TARGET_COMPONENT
targetComponentClass = 'Simulink.ERTTargetCC';
END_CONFIGSET_TARGET_COMPONENT
%/

Note  If you are creating a custom target based on an existing STF , you must 
remove the targetComponentClass section (bounded by the directives 
BEGIN_CONFIGSET_TARGET_COMPONENT and 
END_CONFIGSET_TARGET_COMPONENT). This section is reserved for the use of 
targets developed internally by the MathWorks.

Header Comments
These lines at the head of the file are formatted as TLC comments. They 
provide required information to the System Target File Browser and to the 
build process. Note that you must place the browser comments at the head of 
the file, before any other comments or TLC statements.
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The presence of the comments enables Real-Time Workshop to detect STFs. 
When the System Target File Browser is opened, Real-Time Workshop scans 
the MATLAB path for TLC files that have correctly formatted header 
comments.

The comments contain the following directives:

• SYSTLC: This string is a descriptor that appears in the browser.

• TMF: Name of the template makefile (TMF) to use during build process. When 
the target is selected, this filename is displayed in the Template makefile 
field of the Real-Time Workshop pane of the Configuration Parameters 
dialog.

• MAKE: make command to use during build process. When the target is selected, 
this command is displayed in the Make command field of the Real-Time 
Workshop pane of the Configuration Parameters dialog.

• EXTMODE: Name of external mode interface file (if any) associated with your 
target. If your target does not support external mode, use no_ext_comm.

The following header comments are from matlabroot/rtw/c/ert/ert.tlc.

%% SYSTLC: RTW Embedded Coder TMF: ert_default_tmf MAKE: make_rtw \
%%    EXTMODE: ext_comm
%% SYSTLC: Visual C/C++ Project Makefile only for the RTW Embedded Coder\
%%    TMF: ert_msvc.tmf MAKE: make_rtw EXTMODE: ext_comm

Note that you can specify more than one group of directives in the header 
comments. Each such group is displayed as a different target configuration in 
the System Target File Browser. In the above example, the first two lines of 
code specify the default configuration of the ERT target. The next two lines 
specify a configuration that generates a Visual C/C++ project makefile, using 
the template makefile ert_msvc.tmf. The figure below shows how these 
configurations appear in the System Target File Browser.
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See “Tutorial: Creating a Custom Target Configuration” on page 5-35 for an 
example of customized header comments.

TLC Configuration Variables
This section of the STF assigns global TLC variables that affect the overall code 
generation process. 

Note  For an embedded target, in almost all cases you should simply use the 
global TLC variable settings used by the ERT target (ert.tlc). It is especially 
important that your STF select the Embedded-C code format.

Make sure values are assigned to the following variables:

• CodeFormat: The CodeFormat variable selects one of the available code 
formats. The Embedded-C format is used by the ERT target. Your ERT-based 
target should specify Embedded-C format. Embedded-C format is designed for 
production code, minimal memory usage, static memory allocation, and a 
simplified interface to generated code.

For information on other code formats, see the “Generated Code Formats” 
section of the Real-Time Workshop documentation.

• Language: Selects code generation language. Currently C is the only valid 
value.

It is possible to generate code in a language other than C. To do this would 
require considerable development effort, including reimplementation of all 
block target files to generate the desired target language code. See the 
Target Language Compiler documentation for a discussion of the issues.
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• TargetType: Real-Time Workshop defines the preprocessor symbols RT and 
NRT to distinguish simulation code from real-time code. These symbols are 
used in conditional compilation. The TargetType variable determines 
whether RT or NRT is defined. 

Most targets are intended to generate real-time code. They assign 
TargetType as follows.
%assign TargetType = "RT"

Some targets, such as the Simulink Accelerator, generate code for use in non 
real-time only. Such targets assign TargetType as follows.
%assign TargetType = "NRT"

See “Other Preprocessor Symbols” on page 10–7 for further information on 
the use of these symbols.

TLC Program Entry Point
and Related %includes
The code generation process normally begins with codegenentry.tlc. The STF 
invokes codegenentry.tlc as follows.

%include "codegenentry.tlc"

Note  codegenentry.tlc and the lower-level TLC files assume that 
CodeFormat, TargetType, and Language have been correctly assigned. Set 
these variables before including codegenentry.tlc. 

If you need to implement target-specific code generation features, you should 
include the TLC files mytarget_settings.tlc and mytarget_genfiles.tlc 
in your STF. These files provide a mechanism for executing custom TLC code 
before and after invoking codegenentry.tlc. For information on these 
mechanisms, see

• “Using mytarget_settings.tlc” on page 5–28 for an example of custom TLC 
code for execution before the main code generation entry point. 

• “Using mytarget_genfiles.tlc” on page 5–31 for an example of custom TLC 
code for execution after the main code generation entry point.
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• “Understanding and Using the Build Process” on page 3–8 for general 
information on the build process, and for information on other build process 
customization hooks.

Another way to customize the code generation process is to call lower-level 
functions (normally invoked by codegenentry.tlc) directly, and include your 
own TLC functions at each stage of the process. This approach should be taken 
with caution. See the Target Language Compiler documentation for guidelines. 
The lower-level functions called by codegenentry.tlc are

• genmap.tlc: maps the block names to corresponding language-specific block 
target files.

• commonsetup.tlc: sets up global variables.

• commonentry.tlc: starts the process of generating code in the format 
specified by CodeFormat.

RTW_OPTIONS Section
The RTW_OPTIONS section is bounded by the directives:

/%
BEGIN_RTW_OPTIONS
.
.
END_RTW_OPTIONS
%/

The first part of the RTW_OPTIONS section defines an array of rtwoptions 
structures. This structure is discussed in “rtwoptions Structure” on page 5-10.

The second part of the RTW_OPTIONS section defines rtwgensettings, a 
structure defining the build directory name and other settings for the code 
generation process. See “rtwgensettings Structure” on page 5-16 for 
information about rtwgensettings.
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Note  MATLAB Release 14 (Real-Time Workshop v. 6.0 and Real-Time 
Workshop Embedded Coder v. 4.0) includes significant changes in the way 
that target options are defined, displayed, and operated. If you have developed 
a target for an earlier release or are developing a new target for Release 14, 
see “Defining and Displaying Custom Target Options” on page 5-19. This is 
particularly important if your STF uses rtwoptions callbacks.

rtwoptions Structure
The fields of the rtwoptions structure define variables and associated user 
interface elements to be displayed in the Real-Time Workshop pane of the 
Configuration Parameters dialog. Using the rtwoptions structure array, you 
can define target-specific options displayed in the dialog and organize options 
into categories. You can also write callback functions to specify how these 
options are processed.

When the Real-Time Workshop pane opens, the rtwoptions structure array is 
scanned and the listed options are displayed. Each option is represented by an 
assigned user interface element (check box, edit field, menu, or pushbutton), 
which displays the current option value.

The user interface elements can be in an enabled or disabled (grayed-out) state. 
If an option is enabled, the user can change the option value. 

You can also use the rtwoptions structure array to define special NonUI 
elements that cause callback functions to be executed, but that are not 
displayed in the Real-Time Workshop pane. See “NonUI Elements” on 
page 5-14 for details.

The elements of the rtwoptions structure array are organized into groups. 
Each group of items begins with a header element of type Category. The 
default field of a Category header must contain a count of the remaining 
elements in the category.

The Category header is followed by options to be displayed on the Real-Time 
Workshop pane. The header in each category is followed by one or more option 
definition elements.

The way in which target option groups are displayed depends on whether or not 
the STF has been converted for Release 14 compatibility. In Release 14 
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compatible targets, each category of options corresponds to options listed under 
Real-Time Workshop in the Configuration Parameters dialog. (See 
“Appearance of Target Options in Release 14 Dialogs” on page 5-25.)

Table 5-1 summarizes the fields of the rtwoptions structure.

Example rtwoptions Structure. The following example is excerpted from 
matlabroot/rtw/c/rtwsfcn/rtwsfcn.tlc, the STF for the S-function target. 
The code defines an rtwoptions structure array of three elements. The default 
field of the first (header) element is set to 2, indicating the number of elements 
that follow the header.

rtwoptions(1).prompt = 'RTW S-function code generation options';
rtwoptions(1).type = 'Category';
rtwoptions(1).enable = 'on';  
rtwoptions(1).default = 2; % Number of items under this category

% excluding this one.
rtwoptions(1).popupstrings  = '';
rtwoptions(1).tlcvariable   = '';
rtwoptions(1).tooltip       = '';
rtwoptions(1).callback      = '';
rtwoptions(1).opencallback  = '';
rtwoptions(1).closecallback = '';
rtwoptions(1).makevariable  = '';

rtwoptions(2).prompt = 'Create New Model';
rtwoptions(2).type = 'Checkbox';
rtwoptions(2).default = 'on';
rtwoptions(2).tlcvariable = 'CreateModel';
rtwoptions(2).makevariable = 'CREATEMODEL';
rtwoptions(2).tooltip = ...
['Create a new model containing the generated RTW S-Function block inside it'];

rtwoptions(3).prompt = 'Use Value for Tunable Parameters';
rtwoptions(3).type = 'Checkbox';
rtwoptions(3).default = 'off';
rtwoptions(3).tlcvariable = 'UseParamValues';
rtwoptions(3).makevariable = 'USEPARAMVALUES';
rtwoptions(3).tooltip = ...
['Use value instead of variable name in generated block mask edit fields'];

The first element adds RTW S-function code generation options under 
Real-Time Workshop in the Configuration Parameters dialog. The options 
defined in rtwoptions(2) and rtwoptions(3) display as shown in Figure 5-1.
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Figure 5-1:  Code Generation Options for S-Function Target

If you want to define a large number of options, you can define multiple 
Category groups within a single system target file.

Note the rtwoptions structure and callbacks are written in M-code, although 
they are embedded in a TLC file. To verify the syntax of your rtwoptions 
structure definitions and code, you can execute the commands in MATLAB by 
copying and pasting them to the MATLAB Command Window.

For further examples of target-specific rtwoptions definitions, see “Using 
rtwoptions: the Real-Time Workshop Options Example Target” on page 5-15. 
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Table 5-1 lists the fields of the rtwoptions structure.

Table 5-1:  rtwoptions Structure Fields Summary

Field Name Description

callback See “Defining and Displaying Custom Target Options” 
on page 5-19 for information on converting callbacks for 
release 14 compatibility. For examples of callback 
usage, see also “Using rtwoptions: the Real-Time 
Workshop Options Example Target” on page 5-15.

closecallback
(obsolete)

If your target uses closecallback, convert to 
rtwgensettings.PostApplyCallback instead (see 
“rtwgensettings Structure” on page 5-16 ).

See “Defining and Displaying Custom Target Options” 
on page 5-19 for information on converting callbacks for 
Release 14 compatibility. For examples of callback 
usage, see also “Using rtwoptions: the Real-Time 
Workshop Options Example Target” on page 5-15.

closecallback is ignored in release 14. Prior to 
Release 14, closecallback specified an M-code 
function to call when be executed when the target 
options dialog closes.

default Default value of the option (empty if the type is 
Pushbutton).

enable Must be on or off. If on, the option is displayed as an 
enabled item; otherwise, as a disabled item.

makevariable Template makefile token (if any) associated with 
option. The makevariable is expanded during 
processing of the template makefile. See “Template 
Makefile Tokens” on page 6-2.

NonUI Element that is not displayed, but is used to invoke a 
close or open callback. See “NonUI Elements” on 
page 5-14.
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NonUI Elements. Elements of the rtwoptions array that have type NonUI exist 
solely to invoke callbacks. A NonUI element is not displayed in the 
Configuration Parameters dialog. You can use a NonUI element if you want 
to execute a callback that is not associated with any user interface element, 

opencallback
(obsolete)

If your target uses opencallback, we strongly 
recommend that you use 
rtwgensettings.SelectCallback instead (see 
“rtwgensettings Structure” on page 5-16 ).

If you must maintain use of opencallback, see 
“Defining and Displaying Custom Target Options” on 
page 5-19 for information on converting callbacks for 
Release 14 compatibility. For examples of callback 
usage, see also “Using rtwoptions: the Real-Time 
Workshop Options Example Target” on page 5-15.

Prior to Release 14, opencallback specified M-code to 
be executed when the selected the target from the 
System Target File Browser, or during model loading. 
The purpose of opencallback is to synchronize the 
displayed value of the option with its previous setting. 

popupstrings If type is Popup, popupstrings defines the items in the 
menu. Items are delimited by the “|” (vertical bar) 
character. The following example defines the items of 
the MAT-file variable name modifier menu used by 
the GRT target.

'rt_|_rt|none'

prompt Label for the option.

tlcvariable Name of TLC variable associated with the option.

tooltip Help string displayed when mouse is over the item.

type Type of element: Checkbox, Edit, NonUI, Popup, 
Pushbutton, or Category.

Table 5-1:  rtwoptions Structure Fields Summary (Continued)

Field Name Description
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when the dialog opens or closes. Only the opencallback and closecallback 
fields of a NonUI element have significance. See the next section,“Using 
rtwoptions: the Real-Time Workshop Options Example Target” for an example.

Using rtwoptions: the Real-Time Workshop Options Example Target
A working system target file, with M-file callback functions, has been provided 
as an example of how to use the rtwoptions structure to display and process 
custom options on the Real-Time Workshop pane. The examples are 
compatible with the Release 14 callback API (described in “Defining and 
Displaying Custom Target Options” on page 5–19). 

The example target files are in the directory 
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The example target 
files are

• usertarget.tlc: The example system target file. This file defines several 
menus, check boxes, an edit field, and a nonUI item. The file demonstrates 
the use of callbacks, open callbacks, and closed callbacks.

• usertargetcallback.m: An M-file callback invoked by a menu.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Refer to the example files while reading this section. The example system 
target file, usertarget.tlc: demonstrates the use of callbacks associated with 
the following UI elements:

• The Execution Mode menu executes an open callback that is coded inline 
within the STF. This callback displays a message and sets a model property 
with a set_param().

• The Real-Time Interrupt Source menu executes a callback defined in an 
external M-file, usertargetcallback.m. The TLC variable associated with 
the menu is passed in to the callback, which displays the menu’s current 
value.

• The edit field Signal Logging Buffer Size in Doubles executes a close 
callback defined in an external M-file, usertargetclosecallback.m. The 
TLC variable associated with the edit field is passed in to the callback.

• The External Mode check box executes an open callback that is coded inline 
within the STF. 
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• The NonUi item defined in rtwoptions(8) executes open and close callbacks 
that are coded inline within the STF. Each callback simply prints a status 
message.

We suggest that you study the example code while interacting with the 
example target options in the Configuration Parameters dialog. To interact 
with the example target file,

1 Make matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo your working 
directory.

2 Open any model of your choice.

3 Open the Configuration Parameters dialog and click Real-Time 
Workshop. 

4 Click Browse. The System Target File Browser opens. Select Real-Time 
Workshop Options Example Target. Then click OK.

5 Observe that the Real-Time Workshop pane contains two custom sub-tabs: 
userPreferred target options (I) and userPreferred target options (II).

6 As you interact with the options in these two categories and open and close 
the Configuration Parameters dialog, observe the messages displayed in 
the MATLAB Command Window. These messages are printed from code in 
the STF, or from callbacks invoked from the STF.

rtwgensettings Structure
The final part of the STF defines the rtwgensettings structure. This structure 
stores information that is written to the model.rtw file and used by the build 
process. The rtwgensettings fields of most interest to target developers are

• rtwgensettings.Version: This version compatibility property identifies 
targets use Release 14 compatible rtwoptions callbacks. Do not use this field 
unless you have converted your callbacks, as described in “Compatibility 
Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.DerivedFrom: This string property defines the system 
target file from which options are to be inherited. See “Release 14 Target 
Options Inheritance” on page 5-23.
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• rtwgensettings.SelectCallback: this property specifies a SelectCallback 
function. SelectCallback is associated with the target rather than with any 
of its individual options. The SelectCallback function is triggered when the 
user selects a target with the System Target File browser. When a model 
created prior to MATLAB release 14 is opened, the SelectCallback function 
is also triggered during model loading.

The SelectCallback function is useful for setting up (or disabling) 
configuration parameters specific to the target. 

The following code installs a SelectCallback function:
rtwgensettings.SelectCallback = ['my_select_callback_handler(hDlg, hSrc)'];

The arguments to the SelectCallback function (hDlg, hSrc) are handles 
to private data used by the callback API functions, as described in 
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

Note  If you have developed a custom target and you want it to be compatible 
with model referencing, you must implement a SelectCallback function to 
declare model reference compatibility. See Chapter 7, “Supporting Model 
Referencing.”

• rtwgensettings.ActivateCallback: this property specifies an 
ActivateCallback function. The ActivateCallback function is triggered 
when the active configuration set of the model changes. This could happen 
during model loading, and also when the user changes the active 
configuration set.

The following code installs an ActivateCallback function:
rtwgensettings.ActivateCallback = ['my_activate_callback_handler(hDlg, hSrc)'];

The arguments to the ActivateCallback function (hDlg, hSrc) are handles 
to private data used by the callback API functions, as described in 
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.PostApplyCallback: this property specifies a 
PostApplyCallback function. The PostApplyCallback function is triggered 
when the user clicks the Apply or OK button after editing options in the 
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Configuration Parameters dialog or the Model Explorer. The The 
PostApplyCallback function is called after the changes have been applied to 
the configuration set.

The following code installs an PostApplyCallback function:
rtwgensettings.PostApplyCallback = ['my_postapply_callback_handler(hDlg, hSrc)'];

The arguments to the PostApplyCallback function (hDlg, hSrc) are 
handles to private data used by the callback API functions, as described in 
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.BuildDirSuffix: Most targets define a string that 
identifies build directories created by the target. The build process appends 
the string defined in the rtwgensettings.BuildDirSuffix field to the model 
name to form the name of the build directory. For example, if you define 
rtwgensettings.BuildDirSuffix as follows
rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

the build directories are named model_mytarget_rtw.

Additional Code Generation Options
“Target Language Compiler Variables and Options” in the Real-Time 
Workshop documentation describes additional TLC code generation variables. 
End users of any target can assign these variables by entering statements of 
the form

-aVariable=val

in the TLC options field of the Real-Time Workshop pane.

Alternatively, you can assign these variables in the STF. For readability, we 
recommend that you add such assignments in the section of the STF after the 
comment Configure RTW code generation settings.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on 
STF and other modifications you may need to make to support the Real-Time 
Workshop model referencing features.
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Defining and Displaying Custom Target Options
For Release 14, you view the model options defined in the active configuration 
set in the Configuration Parameters dialog, or in the Simulink Model 
Explorer. These views, which replace the Simulation Parameters dialog used 
in previous releases, feature extensive changes in the appearance and layout 
of code generation options and other target-specific options for Real-Time 
Workshop targets. This section describes the following compatibility issues 
related to the definition and display of target-specific options for custom 
targets:

• Callback compatibility: If the rtwoptions array in your custom system 
target file contains callbacks, convert your callbacks to use the callback 
compatibility API provided in Release 14. See “Compatibility Issues for 
rtwoptions Callbacks” on page 5-19.

• Target options inheritance: If your custom target is derived from another 
target and inherits options, change your system target file to use the new 
inheritance mechanism described in “Release 14 Target Options 
Inheritance” on page 5-23.

• Display of target options: Your target options display differently, and you 
may want to reorganize them. See “Appearance of Target Options in Release 
14 Dialogs” on page 5-25 for information on how custom target options are 
displayed.

Compatibility Issues for rtwoptions Callbacks
The callback, opencallback, and closecallback fields of the rtwoptions 
array structs (see “rtwoptions Structure” on page 5-10) specify optional M-code 
functions that are called when the value of an option changes or when the 
Simulation Parameters dialog opens or closes. If your custom system target 
file does not specify any such callbacks, your target operates transparently in 
the Model Explorer and Configuration Parameters dialog. However, your 
target options are displayed differently, as described in “Appearance of Target 
Options in Release 14 Dialogs” on page 5-25.

If your custom target does specify callbacks, compatibility issues arise, because 
many callbacks depend upon features of the old-style (that is, from releases 
prior to Release 14) Simulation Parameters dialog. For example, a change in 
the state of one GUI element (such as a check box) may invoke a callback that 
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attempts to get a handle to another GUI element in order to enable or disable 
it.

Real-Time Workshop 6.0 supports a callback compatibility API that lets your 
existing rtwoptions callbacks operate under the Model Explorer and 
Configuration Parameters dialog views. This is described in the next section, 
“How to Convert Your rtwOptions Callbacks” on page 5-20. We strongly 
recommend that you convert your callbacks for Release 14 compatibility. If you 
do not want to do so, see “Operation of Targets with Unconverted Callbacks” on 
page 5-22 to understand how your custom target runs in the Release 14 
environment.

How to Convert Your rtwOptions Callbacks. The callback conversion API provides 
variables and accessor functions that allow your callbacks to access graphical 
elements associated with target options. Also, a version compatibility property, 
rtwgensettings.Version, has been added to the rtwgensettings structure in 
the system target file. This property identifies targets that have been converted 
to use Release 14 compatible callbacks.

The callback API variables are

• model: Handle of the current Simulink model. model can be used as an 
argument to get_param and set_param calls. If you use such calls, you do not 
need to change them.

• hSrc: This variable is restricted to use in the callback API functions 
described below. hSrc provides a handle to private data used by the callback 
API functions. Do not set this variable or use it for any other purpose.

• hDlg: This variable is restricted to use in the callback API functions 
described below. hDlg provides a handle to private data used by he callback 
API functions. Do not set this variable or use it for any other purpose.

The callback API provides accessor functions that let you read and set target 
option values, and enable or disable options. In the function descriptions below, 
the tlc_var_name argument is the name of the tlcvariable defined for the 
option in the rtwoptions struct. The callback API accessor functions are

• slConfigUIGetVal(hDlg, hSrc, 'tlc_var_name'): Returns the current 
value of the option specified by the 'tlc_var_name' argument. The data type 
of the return value depends on the data type of the option.
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• slConfigUISetVal:(hDlg, hSrc, 'tlc_var_name', value): Sets the 
option specified by the 'tlc_var_name' argument to the value passed in the 
value argument.

• slConfigUISetEnabled(hDlg, hSrc, 'tlc_var_name', flag): Enables or 
disables the option specified by the 'tlc_var_name' argument. The value 
passed in flag should be either 1 (to enable the option) or 0 (to disable the 
option).

To convert your rtwOptions callbacks,

1 Identify all references to the old Simulation Parameters dialog handle, 
(such as dialogFig or objects accessed through dialogFig) in your 
callbacks.

2 Replace such references with equivalent calls to the callback API functions. 
Your code should use only the API calls and variables described above to 
reference options. See the files described in “Example Callback Code” on 
page 5-21.

3 If your target inherits options from an existing target, you should also 
convert your target to use the new inheritance mechanism. To learn how to 
do this, see “Release 14 Target Options Inheritance” on page 5-23.

4 Declare that your system target file is compliant with the callback API by 
adding the following statement in the Configure RTW code generation 
settings section of the system target file.

rtwgensettings.Version = '1';

rtwoptions callbacks are executed only if rtwgensettings.Version is set as 
shown.

Note  If your target defines opencallback functions, open callbacks are called 
during model loading, as well as when the you select the target from the 
System Target File Browser. 

Example Callback Code. An example system target file and callback handlers are 
available in the directory 
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The example files 
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illustrate how to use Release 14 compatible callbacks with different types of 
GUI elements. The files are

• usertarget.tlc: The example system target file. This file defines several 
menus, check boxes, an edit field, and a nonUI item. The file demonstrates 
the use of callbacks, open callbacks, and close callbacks.

• usertargetcallback.m: An M-file callback invoked by a popup.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Operation of Targets with Unconverted Callbacks. Callback conversion is 
recommended, but not required. If you do not want to convert your callbacks, 
your target operates as follows:

• When the target is selected with the System Target File Browser, the target 
options are displayed in the Model Explorer and Configuration Parameters 
dialogs, as described in “Appearance of Target Options in Release 14 
Dialogs” on page 5-25. However, any callbacks specified in the rtwoptions 
array are ignored.

An additional button labeled Launch old simprm dialog is displayed at the 
bottom of all target-specific pages of the Model Explorer and Configuration 
Parameters dialogs. When the user clicks this button, the old Simulation 
Parameters dialog opens. As the user interacts with the dialog, existing 
callbacks are executed.

The figure below shows the Model Explorer view.
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Note  If your custom target uses unconverted callbacks, you should inform 
end users of your target that they should open and use the old Simulation 
Parameters dialog when setting target options. If they do not do so, options 
are not set correctly.

Release 14 Target Options Inheritance
In previous releases, many custom targets have used the technique of merging 
rtwoptions structures in order to derive or inherit options from an existing 
target. For example, the following code, from a Release 13 target, creates an 
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rtwoptions structure and inherits the rtwoptions of the ERT target merging 
them into the structure.

/%
  BEGIN_RTW_OPTIONS
rtwoption_index = 0;

rtwoption_index = rtwoption_index + 1;
rtwoptions(rtwoption_index).prompt        = 'mytargets Options';
rtwoptions(rtwoption_index).type          = 'Category';
rtwoptions(rtwoption_index).enable        = 'on';  
rtwoptions(rtwoption_index).default       = 5;   % number of items under mytargets
rtwoptions(rtwoption_index).popupstrings  = '';
rtwoptions(rtwoption_index).tlcvariable   = '';
rtwoptions(rtwoption_index).tooltip       = '';
rtwoptions(rtwoption_index).callback      = '';
rtwoptions(rtwoption_index).opencallback  = '';
rtwoptions(rtwoption_index).closecallback = '';
rtwoptions(rtwoption_index).makevariable  = '';
%other rtwoptions elements not shown here
...
% Inherit ERT options
file     = fullfile(matlabroot, 'rtw', 'c', 'ert', 'ert.tlc');
propsObj = tlc.rtwoptions(file);
props    = propsObj.getOptions;
rtwoptions = propsObj.combineCategories(props,rtwoptions);    

Real-Time Workshop 6.0 supports a new, simplified inheritance mechanism. 
The string property rtwgensettings.DerivedFrom has been added to the 
rtwgensettings structure. This property defines the system target file from 
which options are to be inherited. You should convert your custom target to use 
this mechanism as follows:

1 Remove old inheritance code (such as the four line after the %Inherit ERT 
options comment in the example above).

2 Set the rtwgensettings.DerivedFrom property as in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be 
inherited. For example:

rtwgensettings.DerivedFrom = 'ert.tlc';

When the Model Explorer or Configuration Parameters dialog executes this 
line of code, it includes the options from stf.tlc automatically. If stf.tlc is a 
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MathWorks internal system target file that has been converted to a new layout, 
the dialog displays the inherited options using the new layout.

Appearance of Target Options in Release 14 Dialogs
In the old-style Simulation Parameters dialog, target options are organized 
into functional groups, displayed under control of the Category menu in the 
Real-Time Workshop pane. The items in the Category menu correspond to 
the elements of the rtwoptions structure array. Each group of rtwoptions 
elements is delimited by a header element of type Category.

The following figure shows a typical group of target options as displayed in the 
old-style Simulation Parameters dialog.

The new Configuration Parameters dialog preserves the organization of your 
custom target’s rtwoptions structure array. However, the Category menu has 
been replaced by a tabbed selection mechanism. In the Model Explorer dialog 
view, each category of options corresponds to a tab. In the Configuration 
Parameters dialog view, each category of options corresponds to an element of 
the list on the left pane. The spacing and layout of options within each group of 
options is controlled by Real-Time Workshop.

The figure below shows the same target options, as organized and displayed in 
the Model Explorer view. This figure shows how the target options appear 
before any Release 14 compatibility conversions are made.
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After converting the above target to use Release 14 compatible callbacks and 
inheritance options, the target’s inherited options are displayed in a more 
compact form (under categories such as Interface, Templates, and so on) and 
the Launch old simprm dialog... button is removed, as shown in this figure.
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Real-Time Workshop provides the organization of options described above as a 
default layout. This lets you continue to use your custom targets with minimal 
change. This default differs considerably from many of the targets developed 
internally at The MathWorks (such as the ERT and GRT targets). These 
MathWorks targets have been converted to use technologies and features that 
are currently available only to developers at the MathWorks. In a future 
release, The MathWorks plans to provide information and APIs that let you 
convert your custom targets to take full advantage of these technologies and 
features.
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Tips and Techniques for Customizing Your STF
This section includes information on techniques for customizing your STF, 
including

• How to invoke custom TLC code from your STF: See “Required and 
Recommended %includes” on page 5-28.

• How to inherit target options from another STF: See “Inherited Target 
Options” on page 5-32.

• Approaches to supporting multiple development environments with single or 
multiple STFs: See “Supporting Multiple Development Environments” on 
page 5-33.

Required and Recommended %includes
If you need to implement target-specific code generation features, we 
recommend that your STF include the TLC files mytarget_settings.tlc and 
mytarget_genfiles.tlc.

mytarget_settings.tlc provides a mechanism for executing custom TLC code 
before the main code generation entry point. See “Using mytarget_settings.tlc” 
on page 5–28.

Once your STF has set up any required TLC environment, you must include 
codegenentry.tlc to start the standard code generation process.

mytarget_genfiles.tlc provides a mechanism for executing custom TLC code 
after the main code generation entry point. See “Using mytarget_genfiles.tlc” 
on page 5–31.

Using mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code 
generation environment. Use mytarget_settings.tlc to

• Define required TLC paths with %addincludepath directives. You may need 
to do this if you create target-specific TLC function libraries.

• Create records that store target-specific path information and preference 
settings in the CompiledModel general record. This provides a clean 
mechanism for passing this information into the TLC code generation 
environment.
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• Check user settings for code generation options. If incorrect or unsupported 
option settings are found, issue the appropriate error or warning and abort 
the build process if necessary.

mytarget_settings.tlc Example Code. In the TLC code example below, the structure 
Settings is added to the CompiledModel record. The Settings structure is 
loaded from the stored target preferences (see “Accessing Target Preference 
Data from MATLAB” on page 8-13). The Settings structure stores target 
preferences data fields Implementation and ImpPath.

After Settings is added to the CompiledModel record, the example code 
handles inherited options. In this example, the target is assumed to have 
inherited options from the ERT target. The code examines the settings of 
inherited ERT code generation options. If the user has selected unsupported 
options, warning or error messages are displayed. In some cases, selecting an 
unsupported option causes the build process to terminate.

Conditional code at the end of the function allows display of the 
Implementation and ImpPath fields in the MATLAB Command Window if 
desired.
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%selectfile NULL_FILE

%% Read user preferences for the target and add to CompiledModel
%assign prefs = FEVAL("RTW.TargetPrefs.load","mytarget.prefs","structure")
%addtorecord CompiledModel Settings prefs

%% Check for unsupported Embedded Coder options and error/warn appropriately
%if SuppressErrorStatus == 0 
  %assign SuppressErrorStatus = 1
  %assign msg = "Suppressing Error Status as it is not used by this target."
  %warning %<msg>
%endif
%if GenerateSampleERTMain == 1
  %assign msg = "Generating an example main is not supported as the proper main 
function is inherently generated. Unselect the \"Generate an example main program\" 
checkbox under ERT code generation options."
  %exit %<msg>
%endif

%if GenerateErtSFunction == 1
  %assign msg = "Generating a Simulink S-Function is not supported. Unselect the 
\"Create Simulink(S-Function) block\" checkbox under ERT code generation options."
  %exit %<msg>
%endif

%if ExtMode == 1
  %assign msg = "External Mode is not currently supported. Unselect the \"External 
mode\" checkbox under ERT code generation options."
  %exit %<msg>
%endif

%if MatFileLogging == 1
  %assign msg = "MAT-file logging is not currently supported. Unselect the 
\"MAT-file logging\" checkbox under ERT code generation options."
  %exit %<msg>
%endif

%if MultiInstanceERTCode == 1
  %assign msg = "Generate reuseable code is not currently supported. Unselect the 
\"Generate reuseable code\" checkbox under ERT code generation options."
  %exit %<msg>
%endif  

%if GenFloatMathFcnCalls == "ISO_C"
  %assign msg = "Target floating point math environments other than ANSI-C are not 
currently supported. Select ANSI-C for the \"Target floating point math 
environment\" option under ERT code generation options."
  %exit %<msg>
%endif  
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%% To display added TLC settings for debugging purposes, set EchoConfigSettings to 
1.
%assign EchoConfigSettings = 0
%if EchoConfigSettings
  %selectfile STDOUT
  ###############################################################
  
  IMPLEMENTATION is:
  %<CompiledModel.Settings.Implementation>
  
  IMPLEMENTATION path is:   
  %<CompiledModel.Settings.ImpPath>
  
  ###############################################################
  %selectfile NULL_FILE
%endif

Using mytarget_genfiles.tlc
mytarget_genfiles.tlc (optional) is useful as a central file from which to 
invoke any target-specific TLC files that generate additional files as part of 
your target build process. For example, your target may create sub-makefiles 
or project files for a development environment, or command scripts for a 
debugger to do automatic downloads. 

The build process can then invoke these generated files either directly from the 
make process, or after the executable is created. This is done with the 
STF_make_rtw_hook.m mechanism, as described in “STF_rtw_info_hook.m 
(obsolete)” on page 4-14.

The following TLC code shows an example mytarget_genfiles.tlc file.

%selectfile NULL_FILE

%assign ModelName = CompiledModel.Name

%% Create Debugger script
%assign model_script_file = "%<ModelName>.cfg"
%assign script_file = "debugger_script_template.tlc"

%if RTWVerbose
   %selectfile STDOUT
   ### Creating %<model_script_file>
   %selectfile NULL_FILE
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%endif

%include "%<script_file>"
%openfile bld_file = "%<model_script_file>"
%<CreateDebuggerScript()>
%closefile bld_file

Inherited Target Options
ert.tlc provides a basic set of code generation options for Real-Time 
Workshop Embedded Coder. If your target is based on ert.tlc, your STF 
should normally inherit the options defined in ERT.

Note  The inheritance mechanism described in this section is available as of 
Release 14. Targets developed prior to Release 14 should be converted to use 
this mechanism as described in “Release 14 Target Options Inheritance” on 
page 5-23.

To make options inheritance simple, the Real-Time Workshop provides the 
rtwgensettings.DerivedFrom property. This string property defines the 
system target file from which options are to be inherited. Set this property as 
in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be 
inherited. For example, to inherit options from the ERT target.

rtwgensettings.DerivedFrom = 'ert.tlc';

Handling Unsupported Options
If your target does not support all options inherited from ert.tlc, you should 
detect unsupported option settings and display a warning or error message. In 
some cases, if a user has selected an option your target does not support, you 
may need to abort the build process. For example, if your target does not 
support the Generate an example main program option, the build process 
should not be allowed to proceed if that option is selected.
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We recommend that you handle these options in mytarget_settings.tlc. See 
the example in “Using mytarget_settings.tlc” on page 5-28.

Even though your target may not support all inherited ERT options, it is 
required that the ERT options are retained in the Real-Time Workshop pane 
of the GUI. Do not simply remove unsupported options from the rtwoptions 
structure in the STF. Options must be in the GUI to be scanned by Simulink 
when it performs optimizations. 

For example, you may want to prevent users from turning off the Single 
output/update function option. It may seem safe to remove this option from 
the GUI and simply assign the TLC variable CombineOutputUpdateFcns to on. 
However, if the option is not included in the GUI, Simulink assumes that 
output and update functions are not to be combined. Less efficient code is 
generated as a result.

Supporting Multiple Development Environments
Your target may require support for multiple development environments (for 
example, two or more cross-compilers) or multiple modes of code generation (for 
example, generating a binary executable vs. generating a project file for your 
compiler).

One approach to this requirement is to implement multiple STFs; each STF 
invokes an appropriate template makefile for the development environment. 
This amounts to providing two separate targets. 

Another approach is to use a single STF that specifies multiple configurations 
in its comment header. The code within the STF then checks the target 
preferences to determine which template makefile to invoke. See 
“mytarget_default_tmf.m Example Code” on page 6-11 for an example of how 
to check target preferences for this information.

One drawback of using a single STF in this way is that the rtwoptions need 
conditional sections if the target options are not the same for all of the 
configurations the STF supports. The following example (from a hypothetical 
example target) defines an rtwoptions menu element differently, depending 
on the whether or not the PC (Windows) version of MATLAB is running. This 
is determined by calling the MATLAB function ispc. On the PC, the menu 
displays a choice of USB or serial ports to be used in communicating with a 
target device. Otherwise, the menu displays a choice of UNIX logical devices.

if ispc
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  rtwoptions(rtwoption_index).default      = 'USB';
  rtwoptions(rtwoption_index).popupstrings = 
'USB|COM1|COM2|COM3|COM4';
else
  rtwoptions(rtwoption_index).default      = '/dev/ttyS0';
  rtwoptions(rtwoption_index).popupstrings =
'/dev/ttyS0|/dev/ttyS1|/dev/ttyS2|/dev/ttyS3';
end
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Tutorial: Creating a Custom Target Configuration
The purpose of this tutorial is to guide you through the process of creating an 
ERT-based target, my_ert_target. This exercise illustrates several tasks that 
are usually required when creating a custom target:

• Setting up target directories and modifying the MATLAB path.

• Making modifications to a standard STF and TMF such that the custom 
target is visible in the System Target File Browser, inherits ERT options, 
displays target-specific options, and generates code with the default 
host-based compiler.

• Testing the build process with the custom target, using a simple model that 
incorporates an inlined S-function.

During this exercise you implement an operational, but skeletal, ERT-based 
target. This target may be useful as a starting point in a complete 
implementation of a custom embedded target.

my_ert_target Overview
In the following sections you create a skeletal target, my_ert_target. The 
target inherits and supports the standard options of the ERT target, and 
displays additional target-specific options in the Configuration Parameters 
dialog (see Figure 5-2).
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Figure 5-2:  Target-Specific Options for my_ert_target

my_ert_target supports a makefile-based build, generating code and 
executables that run on the host system. my_ert_target uses the LCC 
compiler under Windows. This compiler was chosen because it is readily 
available and is distributed with Real-Time Workshop. If you use a different 
compiler, you can set up LCC temporarily as your default compiler by typing 
the MATLAB command

mex -setup
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Follow the prompts and select LCC.

Note  On UNIX systems, make sure that you have a C compiler installed. You 
can then do this exercise, substituting appropriate UNIX directory syntax.

You can test my_ert_target with any model that is compatible with the ERT 
target. (See the “Requirements and Restrictions” section of the Real-Time 
Workshop Embedded Coder documentation.) Generated programs operate 
identically to ERT generated programs.

However, to simplify the testing of your target, we recommend testing with 
targetmodel.mdl, a very simple fixed-step model (see “Create Test Model and 
S-Function” on page 5-44). The S-Function block in targetmodel.mdl uses the 
source code from the timestwo example, and generates fully inlined code. See 
the Writing S-Functions and Target Language Compiler documentation for a 
complete discussion of the timestwo example S-function.

Creating Target Directories
In this section, you create directories to store the target files and add them to 
the MATLAB path, following the recommended conventions (see “Directory 
and File Naming Conventions” on page 4-3). You also create a directory to store 
the test model, S-function, and generated code.

This example assumes that your target and model directories are located 
within the directory d:/work. Note that your target and model directories 
should not be located anywhere in the MATLAB directory tree (that is, in or 
under the matlabroot directory):

1 Create a target root directory, my_ert_target. To do this from the MATLAB 
Command Window on Windows, enter:

mkdir d:/work/my_ert_target

2 Within the target root directory, create a subdirectory to store your target 
files.

mkdir my_ert_target/my_ert_target

3 Add these directories to your MATLAB path.
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addpath d:/work/my_ert_target
addpath d:/work/my_ert_target/my_ert_target

4 Create a directory, my_targetmodel, to store the test model, S-function, and 
generated code.

mkdir my_targetModel

Create ERT-Based STF
In this section, you create an STF for your target by copying and modifying the 
standard STF for the ERT target. Then you validate the STF by viewing the 
new target in the System Target File Browser and the Configuration 
Parameters dialog.

Editing the STF
To edit the STF, 

1 Change your working directory to you created in “Creating Target 
Directories” on page 5-37.

cd d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert.tlc in 
d:/work/my_ert_target/my_ert_target and rename it to 
my_ert_target.tlc. The file ert.tlc is the STF () for the ERT target.

3 Open my_ert_target.tlc in a text editor of your choice.

4 Generally, the first step in customizing an STF is to replace the header 
comment lines with directives that make your STF visible in the System 
Target File Browser and define the associated TMF (that you create shortly), 
make command, and external mode interface file (if any). See *“Header 
Comments” on page 5-5 for a detailed explanation of these directives.

Replace the header comments in my_ert_target.tlc with the following 
header comments.

%% SYSTLC: My ERT-based Target TMF: my_ert_target_lcc.tmf MAKE: make_rtw \
%%    EXTMODE: no_ext_comm
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5 The file my_ert_target.tlc inherits the standard ERT options, using the 
mechanism described in “Inherited Target Options” on page 5-32. Therefore, 
the existing rtwoptions structure definition is superfluous. Edit the 
RTW_OPTIONS section such that it includes only the following code.
/%
  BEGIN_RTW_OPTIONS

  %----------------------------------------%
  % Configure RTW code generation settings %
  %----------------------------------------%
  
rtwgensettings.BuildDirSuffix = '_ert_rtw';

  END_RTW_OPTIONS 
 %/

6 Delete the code after the end of the RTW_OPTIONS section, which is delimited 
by the directives BEGIN_CONFIGSET_TARGET_COMPONENT and 
END_CONFIGSET_TARGET_COMPONENT. This code is for MathWorks internal 
development use only.

7 Modify the build directory suffix in the rtwgenSettings structure in 
accordance with the conventions described in “rtwgensettings Structure” on 
page 5-16.

To set the suffix to a string appropriate to the _my_ert_target custom 
target, change the line

rtwgensettings.BuildDirSuffix = '_ert_rtw'

to

rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw'

8 Modify the rtwgenSettings structure to inherit options from the ERT target 
and declare Release 14 compatibility as described in “rtwgensettings 
Structure” on page 5-16. Add the following code to the rtwgenSettings 
definition:

rtwgensettings.DerivedFrom = 'ert.tlc';
rtwgensettings.Version = '1';
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9 Add an rtwoptions structure that defines a target-specific options category 
with three check boxes just after the BEGIN_RTW_OPTIONS directive. The 
following code shows the complete RTW_OPTIONS section, including the 
rtwgenSettings changes made in previous steps.
/%
  BEGIN_RTW_OPTIONS

  rtwoptions(1).prompt         = 'My Target Options';
  rtwoptions(1).type           = 'Category';
  rtwoptions(1).enable         = 'on';  
  rtwoptions(1).default        = 3;   % number of items under this category
                                      % excluding this one.
  rtwoptions(1).popupstrings  = '';
  rtwoptions(1).tlcvariable   = '';
  rtwoptions(1).tooltip       = '';
  rtwoptions(1).callback      = '';
  rtwoptions(1).opencallback  = '';
  rtwoptions(1).closecallback = '';
  rtwoptions(1).makevariable  = '';

  rtwoptions(2).prompt         = 'Demo option 1';
  rtwoptions(2).type           = 'Checkbox';
  rtwoptions(2).default        = 'off';
  rtwoptions(2).tlcvariable    = 'DummyOpt1';
  rtwoptions(2).makevariable   = '';
  rtwoptions(2).tooltip        = ['Demo option1 (non-functional)'];
  rtwoptions(2).callback       = '';

  rtwoptions(3).prompt         = 'Demo option 2';
  rtwoptions(3).type           = 'Checkbox';
  rtwoptions(3).default        = 'off';
  rtwoptions(3).tlcvariable    = 'DummyOpt2';
  rtwoptions(3).makevariable   = '';
  rtwoptions(3).tooltip        = ['Demo option2 (non-functional)'];
  rtwoptions(3).callback       = '';

  rtwoptions(4).prompt         = 'Demo option 3';
  rtwoptions(4).type           = 'Checkbox';
  rtwoptions(4).default        = 'off';
  rtwoptions(4).tlcvariable    = 'DummyOpt3';
  rtwoptions(4).makevariable   = '';
  rtwoptions(4).tooltip        = ['Demo option3 (non-functional)'];
  rtwoptions(4).callback       = '';

  %----------------------------------------%
  % Configure RTW code generation settings %
  %----------------------------------------%
  
rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw';
rtwgensettings.DerivedFrom = 'ert.tlc';

  rtwgensettings.Version = '1';
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END_RTW_OPTIONS 
%/

10 Save your changes to my_ert_target.tlc and close the file.

Viewing the STF
At this point, you can verify that the target inherits and displays ERT options 
correctly as follows:

1 Create a new model.

2 Open the Configuration Parameters dialog. 

3 Select Real-Time Workshop.

4 Click Browse to open the System Target File Browser. 

5 In the Browser, scroll through the list of targets to find the new target, 
my_ert_target.

6 Select My ERT-based Target as shown below, and click OK.
.

7 The Real-Time Workshop pane now shows that the model is configured for 
the my_ert_target target. The RTW system target file, Make command, 
and Template makefile fields should appear as follows:
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8 Click My Target Options and observe that the target displays the three 
check box options defined in the rtwoptions structure, as shown in the 
following figure.
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9 Click Real-Time Workshop and reopen the System Target File Browser.

10 Select the RTW Embedded Coder target (ert.tlc) and observe that the 
target displays the standard ERT options.

11 Close the model. You do not need to save it.

At this point, the STF for the skeletal target is complete. Note, however, that 
the STF header comments reference a TMF, my_ert_target_lcc.tmf. You are 
not able to invoke the build process for your target until the TMF file is in place. 
In the next section, you create my_ert_target_lcc.tmf.

Create ERT-Based TMF
In this section, you create a TMF for your target by copying and modifying the 
standard ERT TMF for the LCC compiler:
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1 Check that your working directory is still set to the target file directory you 
created previously in “Creating Target Directories” on page 5-37.

d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert_lcc.tmf in 
d:/work/my_ert_target/my_ert_target and rename it to 
my_ert_target.tlc. The file ert_lcc.tmf is the ERT compiler-specific 
template makefile for the LCC compiler.

3 Open my_ert_target_lcc.tmf in a text editor of your choice.

4 Change the SYS_TARGET_FILE parameter so that the correct file reference is 
generated in the make file. Change the line

SYS_TARGET_FILE = ert.tlc

to

SYS_TARGET_FILE = my_ert_target.tlc

5 Save changes to my_ert_target_lcc.tmf and close the file.

Your target can now generate code and build a host-based executable. In the 
next sections, you create a test model and test the build process using 
my_ert_target.

Create Test Model and S-Function
In this section, you build a simple test model for later use in code generation:

1 Set your working directory to /work/my_targetModel.

cd d:/work/my_targetModel

For the remainder of this tutorial, my_targetModel is assumed to be the 
working directory. Your target writes the output files of the code generation 
process into a build directory within the working directory. When inlined 
code is generated for the timestwo S-function, the build process looks for the 
TLC implementation of the S-function in the working directory.
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2 Copy the following C and TLC files for the timestwo S-function from 
matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timestwo to your 
working directory:

- timestwo.c

- rename_timestwo.tlc

3 Rename the file rename_timestwo.tlc to timestwo.tlc, so that it is used 
when generating code.

4 Build the timestwo MEX-file in d:/work/my_targetmodel.

mex timestwo.c

5 Create the following model, using an S-Function block from the Simulink 
User-Defined Functions library. Save the model in your working directory 
as targetmodel.mdl.

6 Double-click the S-Function block to open the Block Parameters dialog. 
Enter the S-function name timestwo. Click OK. The block is now bound to 
the timestwo MEX-file. 

7 Open the Configuration Parameters dialog and click Solver. 

8 Set the solver Type to fixed-step and click Apply.

9 Save the model.

10 Open the scope and run a simulation. Verify that the timestwo S-function 
multiplies its input by 2.0.

Keep the targetmodel model open for use in the next section, in which you 
generate code using the test model.



5 System Target Files

5-46

Verify Target Operation
In this section you configure targetmodel for the my_ert_target custom 
target, and use the target to generate code and build an executable:

1 Open the Configuration Parameters dialog and select Real-Time 
Workshop.

2 Click Browse to open the System Target File Browser.

3 In the Browser, select My ERT-based Target and click OK.

4 The Configuration Parameters dialog now displays the Real-Time 
Workshop pane for my_ert_target.

5 Select the Generate HTML report option.

6 Click Apply and save the model. The model is configured for my_ert_target. 

7 Click Build. If the build is successful, MATLAB displays the message below.
### Created executable: /targetmodel.exe 
### Successful completion of Real-Time Workshop build procedure for model: 

targetmodel

Your working directory contains the targetmodel.exe file and the build 
directory, targetmodel_mytarget_ert_rtw, which contains generated code 
and other files. The working directory also contains an slproj directory, 
used internally by the build process.

The code generator also creates and displays a code generation report.

8 To view the generated model code, activate the code generation report 
window. In the Contents pane, click the targetmodel.c link. 

9 In targetmodel.c, locate the model step function, targetmodel_step. 
Observe the following code.

/* S-Function block: <Root>/S-function */
/* Multiply input by two */



Tips and Techniques for Customizing Your STF

5-47

targetmodel_B.S_Function = targetmodel_B.SineWave * 2.0;

This code verifies that the mytarget_ert_rtw target has generated a correct 
inlined output computation for the S-Function block in the model.
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Template Makefiles and Tokens
To configure or customize a template makefile (TMF), you should be familiar 
with how the make command works and how it processes makefiles. You should 
also understand makefile build rules. For information of these topics, refer to 
the documentation provided with the make utility you use. There are also 
several good books on make utilities.

TMFs are made up of statements containing tokens. The Real-Time Workshop 
build process expands tokens and creates a makefile, model.mk. TMFs are 
designed to generate makefiles for specific compilers on specific platforms. The 
generated model.mk file is tailored to compile and link code generated from 
your model, using commands specific to your development system.

Figure 6-1:  Creation of model.mk

Template Makefile Tokens
The make_rtw M-file command (or a different command provided with some 
targets) directs the process of generating model.mk. The make_rtw command 
processes the TMF specified on the General options section of the Real-Time 
Workshop tab of the Configuration Parameters dialog. make_rtw copies the 
TMF, line by line, expanding each token encountered. Table 6-1 lists the tokens 
and their expansions

Template
Makefile

Makefile:
model.mk

system.tmf
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Table 6-1:  Template Makefile Tokens Expanded by make_rtw

Token Expansion

|>ALT_MATLAB_BIN<| Alternate full pathname for the 
MATLAB executable; value is different 
than value for MATLAB_BIN when the 
full pathname contains spaces.

|>ALT_MATLAB_ROOT< | Alternate full pathname for the 
MATLAB installation; value is different 
than value for MATLAB_ROOT when 
the full pathname contains spaces.

|>BUILDARGS<| Options passed to make_rtw. This token 
is provided so that the contents of your 
model.mk file changes when you change 
the build arguments, thus forcing an 
update of all modules when your build 
options change.

|>COMPUTER<| Computer type. See the MATLAB 
computer command.

|>EXT_MODE<| True (1) to enable generation of 
external mode support code, otherwise 
False (0).

|>EXTMODE_TRANSPORT<| Index of transport mechanism (for 
example, tcpip, serial) for external 
mode.

|>EXTMODE_STATIC<| True (1) if static memory allocation is 
selected for external mode. False (0) if 
dynamic memory allocation is selected.

|>EXTMODE_STATIC_SIZE<| Size of static memory allocation buffer 
(if any) for external mode.
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|>MAKEFILE_NAME<| model.mk — The name of the makefile 
that was created from the TMF.

|>MATLAB_BIN<| Location of the MATLAB executable.

|>MATLAB_ROOT<| Path to where MATLAB is installed.

|>MEM_ALLOC<| Either RT_MALLOC or RT_STATIC. 
Indicates how memory is to be allocated.

|>MEXEXT<| MEX-file extension. See the MATLAB 
mexext command.

|>MODEL_MODULES<| Any additional generated source (.c) 
modules. For example, you can split a 
large model into two files, model.c and 
model1.c. In this case, this token 
expands to model1.c.

|>MODEL_MODULES_OBJ<| Object filenames (.obj) corresponding 
to any additional generated source (.c) 
modules.

|>MODEL_NAME<| Name of the Simulink block diagram 
currently being built.

|>MULTITASKING<| True (1) if solver mode is multitasking, 
otherwise False (0).

|>NCSTATES<| Number of continuous states.

|>NUMST<| Number of sample times in the model.

|>RELEASE_VERSION<| The release version of MATLAB.

|>S_FUNCTIONS<| List of noninlined S-function (.c) 
sources.

|>S_FUNCTIONS_LIB<| List of S-function libraries available for 
linking.

Table 6-1:  Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion
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These tokens are expanded by substitution of parameter values known to the 
build process. For example, if the source model contains blocks with two 
different sample times, the TMF statement

NUMST = |>NUMST<| 

expands to the following in model.mk.

NUMST = 2 

In addition to the above, make_rtw expands tokens from other sources:

• Target-specific tokens defined in the target options of the Configuration 
Parameters dialog

• Structures in the rtwoptions section of the system target file. Any 
structures in the rtwoptions structure array that contain the field 
makevariable are expanded.

The following example is extracted from matlabroot/rtw/c/grt/grt.tlc. 
The section starting with BEGIN_RTW_OPTIONS contains M-file code that sets up 
rtwoptions. The following directive causes the |>EXT_MODE<| token to be 
expanded to 1 (on) or 0 (off), depending on how you set the External mode 
options.

rtwoptions(2).makevariable = 'EXT_MODE'

|>S_FUNCTIONS_OBJ<| Object (.obj) file list corresponding to 
noninlined S-function sources.

|>SOLVER<| Solver source filename, for example, 
ode3.c.

|>SOLVER_OBJ<| Solver object (.obj) filename, for 
example, ode3.obj.

|>TID01EQ<| True (1) if sampling rates of the 
continuous task and the first discrete 
task are equal, otherwise False (0). 

Table 6-1:  Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion
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The make Command
After creating model.mk from your TMF, Real-Time Workshop invokes a make 
command. To invoke make, Real-Time Workshop issues this command.

makecommand -f model.mk

makecommand is defined by the MAKE macro in your target’s TMF (see Figure 6-2 
on page 6-9). You can specify additional options to make in the Make command 
field of the Real-Time Workshop pane. (See the sections “Make Command” 
and “Template Makefiles and Make Options” in the Real-Time workshop 
documentation).

For example, specifying OPT_OPTS=-O2 in the Make command field causes 
make_rtw to generate the following make command.

makecommand -f model.mk OPT_OPTS=-O2

A comment at the top of the TMF specifies the available make command 
options. If these options do not provide you with enough flexibility, you can 
configure your own TMF. 

Make Utilities 
The make utility lets you control nearly every aspect of building your real-time 
program. There are several different versions of make available. Real-Time 
Workshop provides the Free Software Foundation’s GNU make for both UNIX 
and PC platforms in platform-specific subdirectories under

matlabroot/rtw/bin.

It is possible to use other versions of make with Real-Time Workshop, although 
GNU Make is recommended. To ensure compatibility with Real-Time 
Workshop, make sure that your version of make supports the following 
command format.

makecommand −f model.mk
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Structure of the Template Makefile
A TMF has four sections:

• The first section contains initial comments that describe what this makefile 
targets. 

• The second section defines macros that tell make_rtw how to process the 
TMF. The macros are

- MAKECMD — This is the command used to invoke the make utility. For 
example, if MAKECMD = mymake, then the make command invoked is

mymake −f model.mk
- HOST — The target platform for this TMF is targeted for. This can be 
HOST=PC, UNIX, computer_name (see the MATLAB computer command), or 
ANY.

- BUILD — This tells make_rtw whether or not it should invoke make from the 
Real-Time Workshop build procedure. Specify BUILD=yes or no.

- SYS_TARGET_FILE — Name of the system target file or the value all. This 
is used for consistency checking by make_rtw to verify that the correct 
system target file was specified in the Target selection panel of the 
Real-Time Workshop pane of the Configuration Parameters dialog. If 
you specify all, you can use the TMF with any system target file.

- BUILD_SUCCESS — An optional macro that specifies the build success string 
to be displayed on successful make completion on the PC. For example,
BUILD_SUCCESS = ### Successful creation of

The BUILD_SUCCESS macro, if used, replaces the standard build success 
string found in the TMFs distributed with the bundled Real-Time 
Workshop targets (such as GRT):
@echo ### Created executable $(MODEL).exe

Your TMF must include either the standard build success string, or use 
the BUILD_SUCCESS macro. For an example of the use of BUILD_SUCCESS, 
see
matlabroot/toolbox/rtw/c/grt/grt_bc.tmf
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- BUILD_ERROR — An optional macro that specifies the build error message 
to be displayed when an error is encountered during the make procedure. 
For example,
BUILD_ERROR = ['Error while building ', modelName]

- VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS — add this 
command if you want the makefile output to be displayed always 
(regardless of the  setting of the Verbose build option in the Real-Time 
Workshop Debugging pane).

The following DOWNLOAD options apply only to the Tornado target:

- DOWNLOAD — An optional macro that you can specify as yes or no. If 
specified as yes (and BUILD=yes), then make is invoked a second time with 
the download target.
make -f model.mk download

- DOWNLOAD_SUCCESS — An optional macro that you can use to specify the 
download success string to be used when looking for a successful 
download. For example,
DOWNLOAD_SUCCESS = ### Downloaded

- DOWNLOAD_ERROR — An optional macro that you can use to specify the 
download error message to be displayed when an error is encountered 
during the download. For example, 
DOWNLOAD_ERROR = ['Error while downloading ', modelName]

• The third section defines the tokens make_rtw expands (see Table 6-1 on 
page 3).

• The fourth section contains the make rules used in building an executable 
from the generated source code. The build rules are typically specific to your 
version of make.
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Figure 6-2 shows the general structure of a TMF.

Figure 6-2:  Structure of a Template Makefile

#-- Section 1: Comments -------------------------------------------------------
#
# Description of target type and version of make for which 
# this template makefile is intended.
# Also documents any optional build arguments.
#-- Section 2: Macros read by make_rtw ----------------------------------------
#
# The following macros are read by the Real-Time Workshop build procedure:
#
# MAKECMD  - This is the command used to invoke the make utility.
# HOST            - Platform this template makefile is designed 
#                    (i.e., PC or UNIX)
# BUILD           - Invoke make from the Real-Time Workshop build procedure 
#                    (yes/no)?
# SYS_TARGET_FILE - Name of system target file.

MAKECMD = make
HOST            = UNIX
BUILD           = yes
SYS_TARGET_FILE = system.tlc
#-- Section 3: Tokens expanded by make_rtw ------------------------------------
#

MODEL           = |>MODEL_NAME<|
MODULES         = |>MODEL_MODULES<|
MAKEFILE        = |>MAKEFILE_NAME<|
MATLAB_ROOT     = |>MATLAB_ROOT<|
...
COMPUTER        = |>COMPUTER<|
BUILDARGS       = |>BUILDARGS<|

#-- Section 4: Build rules ----------------------------------------------------
#
# The build rules are specific to your target and version of make.

Comments

make_rtw 
macros

make_rtw 
tokens

Build rules
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Customizing and Creating Template Makefiles
This section describes the mechanics of setting up a custom TMF and 
incorporating it into the build process. It also discusses techniques for 
modifying a TMF and M-file mechanisms associated with the TMF.

Before creating a custom TMF, you should read Chapter 4, “Target Directories, 
Paths, and Files” to understand the directory structure and MATLAB path 
requirements for custom targets. 

Setting Up a Template Makefile
To customize or create a new TMF, you should copy an existing GRT or ERT 
TMF from one of the following locations:

matlabroot/rtw/c/grt

matlabroot/rtw/c/ert

Place the copy in the same directory as the associated system target file (STF). 
Usually, this is the mytarget/mytarget directory within the target directory 
structure. Then, rename your TMF appropriately (for example, mytarget.tmf) 
and modify it.

To ensure that the build process locates and selects your TMF correctly, you 
must provide information in the STF file header (see “System Target File 
Structure” on page 5–4).

For a target that implements a single TMF, the standard way to specify the 
TMF to be used in the build process is to use the TMF directive of the STF file 
header.

TMF: mytarget.tmf

If your target must support multiple development environments, you can 
specify an M-file script that selects the correct TMF, based on user preferences 
(see Chapter 8, “Using Target Preferences”). To do this, you must

• Create the M-file script in your mytarget/mytarget directory. The naming 
convention for this file is mytarget_default_tmf.m. (This naming 
convention, although strongly recommended, is not required).

• Specify this M-file in the TMF directive of the STF file header.
TMF: mytarget_default_tmf
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The build process then invokes your mytarget_default_tmf.m file, which then 
selects the correct TMF, based on target preference settings. 
“mytarget_default_tmf.m Example Code” on page 6-11 illustrates this 
technique.

Another useful technique is to store a path to the user’s installed development 
environment in your target preferences. You can then locate the template 
makefiles under the appropriate tool directory. This allows several tool-specific 
template makefiles files to be located under the specific tool directory.

mytarget_default_tmf.m Example Code. The code example below implements an M 
function, mytarget_default_tmf. The function loads target preferences into 
a structure from preferences data stored on disk. The code verifies that the 
target preferences information is consistent with the STF name, and extracts 
the associated TMF name. The TMF name is returned as the string tmf.

function [tmf,envVal] = mytarget_default_tmf
  try
    prefs = RTW.TargetPrefs.load('mytarget.prefs','structure');
  catch
    error(lasterr);
  end

  % Get the desired MYTARGET implementation and ensure it is supported
  if ~isfield(prefs, 'Implementation')
    error('MYTARGET preferences not set correctly, update Target Preferences.');
  end
  imp = deblank(lower(prefs.Implementation));
  stfname = deblank(lower(get_param(bdroot, 'RTWSystemTargetFile')));
  
  if ~strncmp(imp, stfname, length(stfname) - length('.tlc'))
    msg = ['System Target file name: ', stfname,
           ' does not match Implementation specified in Target Preferences: ', imp];
    error(msg);
  end
  
  if ~exist([imp, '_rtw_info_hook'])
    msg = ['Files for MYTARGET Implementation: ''', imp, ''' cannot be found.'];
    error(msg);
  end
  
  % Return the desired template make file.
  tmf = [imp, '.tmf'];
  
  % This argument is unused
  envVal = '';



6 Template Makefiles

6-12

Using Macros and Pattern Matching Expressions
in a Template Makefile
This section shows, through an example, how to use macros and 
file-pattern-matching expressions in a TMF to generate commands in the 
model.mk file.

The make utility processes the model.mk makefile and generates a set of 
commands based upon dependency rules defined in model.mk. After make 
generates the set of commands needed to build or rebuild test, make executes 
them. 

For example, to build a program called test, make must link the object files. 
However, if the object files don’t exist or are out of date, make must compile the 
C code. Thus there is a dependency between source and object files.

Each version of make differs slightly in its features and how rules are defined. 
For example, consider a program called test that gets created from two 
sources, file1.c and file2.c. Using most versions of make, the dependency 
rules would be

test: file1.o file2.o
cc −o test file1.o file2.o

file1.o: file1.c
cc −c file1.c

file2.o: file2.c
cc −c file2.c

In this example, a UNIX environment is assumed. In a PC environment the file 
extensions and compile and link commands are different.

In processing the first rule

test: file1.o file2.o 

make sees that to build test, it needs to build file1.o and file2.o. To build 
file1.o, make processes the rule

file1.o: file1.c

If file1.o doesn’t exist, or if file1.o is older than file1.c, make compiles 
file1.c.
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The format of Real-Time Workshop TMFs follows the above example. Our 
TMFs use additional features of make such as macros and 
file-pattern-matching expressions. In most versions of make, a macro is defined 
with

MACRO_NAME = value

References to macros are made with $(MACRO_NAME). When make sees this form 
of expression, it substitutes value for $(MACRO_NAME).

You can use pattern matching expressions to make the dependency rules more 
general. For example, using GNU Make you could replace the two "file1.o: 
file1.c" and "file2.o: file2.c" rules with the single rule

%.o : %.c
cc −c $<

Note that $< above is a special macro that equates to the dependency file (that 
is, file1.c or file2.c). Thus, using macros and the “%” pattern matching 
character, the above example can be reduced to

SRCS = file1.c file2.c
OBJS = $(SRCS:.c=.o)

test: $(OBJS)
cc −o $@ $(OBJS)

%.o : %.c
cc −c $<

Note that the $@ macro above is another special macro that equates to the name 
of the current dependency target, in this case test.

This example generates the list of objects (OBJS) from the list of sources (SRCS) 
by using the string substitution feature for macro expansion. It replaces the 
source file extension (.c) with the object file extension (.o). This example also 
generalized the build rule for the program, test, to use the special “$@” macro.

Using rtwmakecfg Files to Customize the Makefile
Real-Time Workshop TMFs provide rules and macros that let you add source 
directories, include directories, and run-time library names and module objects 
to generated makefiles.
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The rtwmakecfg mechanism lets inlined S-functions add information to the 
makefile. This feature is useful if you need to include your code when building 
inlined S-functions, such as device driver blocks.

To add information needed for an S-function to the makefile, you must

• Create an M-function, rtwmakecfg, in a file rtwmakecfg.m. This file is 
associated with your S-function by its directory location. “Creating the 
rtwmakecfg.m File” below describes the requirements for the rtwmakecfg 
function and the data it should return.

• Modify your target’s TMF to support macro expansion for the information 
returned by the rtwmakecfg function. “Modifying the TMF” on page 6-15 
describes the modifications needed.

Creating the rtwmakecfg.m File
The rtwmakecfg.m file must reside in the same directory as your S-function 
component (.dll on Windows, .mex on UNIX). The rtwmakecfg function is 
called during the build process. After the TLC phase of the build, when 
generating a makefile from the TMF, the build process searches for an 
rtwmakecfg.m file in the directory containing the S-function component. If an 
rtwmakecfg.m file is found, the function is called.

The rtwmakecfg function must return a structured array with following 
elements:

• makeInfo.includePath: Acell array containing additional include directory 
names, which must be organized as row vector. These directory names are 
expanded into include instructions in the generated makefile.

• makeInfo.sourcePath: A cell array containing additional source directory 
names, which must be organized as a row vector. These directory names are 
expanded into make rules in the generated makefile.

• makeInfo.library: A structure containing additional runtime library names 
and module objects, which must be organized as a row vector. This 
information is expanded into make rules in the generated makefile.

- makeInfo.library(n).Name: String. Specifies the name of the library 
(without extension).

- makeInfo.library(n).Location: String. Directory in which the library is 
located.
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- makeInfo.library(n).Modules: Cell array. Specifies the C files in the 
library.

Modifying the TMF 
You must modify the Include Path, Additional Libraries, and Rules 
sections of your target’s TMF to expand the information generated by the 
rtwmakecfg function. Code excerpts are shown below. These examples may not 
be appropriate for your particular make utility. You can find other examples 
for numerous make environments in the ERT TMFs. The ERT TMFs are 
located in matlabroot/rtw/c/ert/*.tmf.

The following example adds directory names to the include path.

ADD_INCLUDES = \
|>START_EXPAND_INCLUDES<| -I|>EXPAND_DIR_NAME<| \
|>END_EXPAND_INCLUDES<|

The ADD_INCLUDES macro must be present in the INCLUDES line, as in 

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(ADD_INCLUDES) $(USER_INCLUDES)

The purpose of the following code example is to add library names to the 
makefile.

LIBS =                                                                   
 |>START_PRECOMP_LIBRARIES<|                                              
 LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_PRECOMP_LIBRARIES<|              
 |>START_EXPAND_LIBRARIES<|                                               
 LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_EXPAND_LIBRARIES<| 

The purpose of the following code example is to add rules to the makefile:

:|>START_EXPAND_RULES<|                                                   
 $(BLD)/%.o: |>EXPAND_DIR_NAME<|/%.c $(SRC)/$(MAKEFILE) rtw_proj.tmw      

@$(BLANK)                                                                 
@echo ### "|>EXPAND_DIR_NAME<|\$*.c"                                      
$(CC) $(CFLAGS) $(APP_CFLAGS) -o $(BLD)$(DIRCHAR)$*.o                      

|>EXPAND_DIR_NAME<|$(DIRCHAR)$*.c > $(BLD)$(DIRCHAR)$*.lst                 
 |>END_EXPAND_RULES<|                                                     
                                                                          
|>START_EXPAND_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \              
|>START_EXPAND_MODULES<|    |>EXPAND_MODULE_NAME<|.o \                     
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|>END_EXPAND_MODULES<| 

                                                                          
|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw                        
$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)                          

@$(BLANK)                                                                 
@echo ### Creating $@                                                     
$(AR) -r $@ 

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)             
|>END_EXPAND_LIBRARIES<|                                                   
                                                                          
|>START_PRECOMP_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \             
|>START_EXPAND_MODULES<|    |>EXPAND_MODULE_NAME<|.o \                     
|>END_EXPAND_MODULES<|                                                     
                                                                          
|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw                        
$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)                          

@$(BLANK)                                                                 
@echo ### Creating $@                                                     
$(AR) -r $@ 

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)             
|>END_PRECOMP_LIBRARIES<| 

Supporting Continuous Time in Custom Targets
If you want your custom ERT-based target to support continuous time, you 
must update your template makefile (TMF) and the static main program 
module (for example, mytarget_main.c) for your target.

Template Makefile Modifications
Add the NCSTATES token expansion after the NUMST token expansion, as follows:

NUMST = |>NUMST<|
NCSTATES = |>NCSTATES<|

In addition, add NCSTATES to the  CPP_REQ_DEFINES macro, as in the following 
example:

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \
-DMAT_FILE=$(MAT_FILE) 
-DINTEGER_CODE=$(INTEGER_CODE) \
-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \
-DHAVESTDIO 
-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \
-DADD_MDL_NAME_TO_GLOBALS=$(ADD_MDL_NAME_TO_GLOBALS)
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Modifications to Main Program Module
The main program module defines a static main function that manages task 
scheduling for all supported tasking modes of single- and multiple-rate models. 
NUMST (the number of sample times in the model) determines whether the main 
function calls multirate or singlerate code. However, when a model uses 
continuous time, it is incorrect to rely on NUMST directly.

When the model has continuous time and the flag TID01EQ is true, both 
continuous time and the fastest discrete time are treated as one rate in 
generated code. The code associated with the fastest discrete rate is guarded by 
a major time step check. When the model has only two rates, and TID01EQ is 
true, the generated code has a single-rate call interface.

To support models that have continuous time, update the static main module 
to take TID01EQ into account, as follows: 

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0
#define DISC_NUMST (NUMST - 1) 
#else 
#define DISC_NUMST NUMST 
#endif 

2 Replace all instances of NUMST in the file by DISC_NUMST.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on 
TMF modifications you may need to make to support the Real-Time Workshop 
model referencing features.

Generating Make Commands for Nondefault
Compilers
Custom targets may need a target-specific hook file to generate an appropriate 
make command when a nondefault compiler is used. This file can be used to 
override the default Real-Time Workshop behavior for selecting the 
appropriate compiler tool to be used in the build process.

See “STF_wrap_make_cmd_hook.m” on page 4-12 for further details.
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Overview
This chapter describes how to adapt your custom target for code generation 
compatibility with the model reference features. Most of the guidelines below 
concern required modifications to your system target file (STF) and template 
makefile (TMF).

Note the following general requirements and issues for model reference 
compatibility:

• A model reference compatible target must be derived from the ERT or GRT 
targets.

• Your target must declare model reference compatibility, as described in 
“System Target File Modifications” on page 7-3.

• Your TMF must define a number of makefile tokens, variables and rules 
specifically for model referencing support, as described in “Template 
Makefile Modifications” on page 7-4.

• To support model reference builds, your TMF must support use of the shared 
utilities directory, as described in “Hook File Modifications” on page 7-7.

• When generating code from a model that references another model, both the 
top-level model and the referenced models must be configured for the same 
code generation target.

• Note that the External mode option is not supported in model reference 
Real-Time Workshop target builds. If the user has selected this option, it is 
ignored during code generation.
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System Target File Modifications
Your target must declare model reference compatibility by setting the 
ModelReferenceCompliant flag.

To do this, your STF must implement a SelectCallback function (see 
“Compatibility Issues for rtwoptions Callbacks” on page 5-19). This callback is 
invoked whenever the user selects a target in the System Target File browser. 
Your SelectCallback function must set the ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback field 
of the rtwgensettings structure in your STF. The following code installs the 
SelectCallback function:

rtwgensettings.SelectCallback = 
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');
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Template Makefile Modifications
In addition to the TMF modifications described in this section, you must modify 
your TMF variables and rules as described in “Hook File Modifications” on 
page 7-7.

1 Add the following make variables and tokens to be expanded when the 
makefile is generated:

MODELREFS                 = |>MODELREFS<|
MODELLIB                  = |>MODELLIB<|
MODELREF_LINK_LIBS        = |>MODELREF_LINK_LIBS<|
MODELREF_INC_PATH = |>START_MDLREFINC_EXPAND_INCLUDES<|\ 
    -I|>MODELREF_INC_PATH<| |>END_MDLREFINC_EXPAND_INCLUDES<| 
RELATIVE_PATH_TO_ANCHOR   = |>RELATIVE_PATH_TO_ANCHOR<|
MODELREF_TARGET_TYPE      = |>MODELREF_TARGET_TYPE<|

The following code excerpts show how makefile tokens are expanded for a 
referenced model, and for the top-level model that references it.

 Example of how tokens are expanded for a referenced model
MODELREFS                 = 
MODELLIB                  = engine3200cc_rtwlib.a
MODELREF_LINK_LIBS        = 
MODELREF_INC_PATH         = 
RELATIVE_PATH_TO_ANCHOR   = ../../..
MODELREF_TARGET_TYPE      = RTW

 Example of how tokens are expanded for the top-level model
MODELREFS                 = engine3200cc transmission
MODELLIB                  = archlib.a
MODELREF_LINK_LIBS        = engine3200cc_rtwlib.a transmission_rtwlib.a 
MODELREF_INC_PATH = -I../slprj/ert/engine3200cc -I../slprj/ert/transmission 
RELATIVE_PATH_TO_ANCHOR   = ..
MODELREF_TARGET_TYPE      = NONE
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The MODELREFS token for the top-level model expands to a list of referenced 
model names.

The MODELLIB token expands to the name of the library generated for the 
model.

The MODELREF_LINK_LIBS token for the top-level model expands to a list of 
referenced model libraries that the top-level model links against.

The MODELREF_INC_PATH token for the top-level model expands to the include 
path to the referenced models.

The RELATIVE_PATH_TO_ANCHOR token expands to the relative path, from the 
location of the generated makefile, to the MATLAB working directory (pwd).

The MODELREF_TARGET_TYPE token signifies the type of target being built. 
Possible values are

- NONE: Standalone model or top-level model referencing other model(s).

- RTW: Model reference Real-Time Workshop target build.

- SIM: Model reference simulation target build.

2 Add RELATIVE_PATH_TO_ANCHOR, MODELREF_INC_PATH, and 
SHARED_INCLUDES include paths to the overall INCLUDES variable.
INCLUDES = -I. -I$(RELATIVE_PATH_TO_ANCHOR) $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

   $(USER_INCLUDES) $(MODELREF_INC_PATH) 

3 Change the SRCS variable in your TMF so that it initially lists only common 
modules. Further modules are then appended conditionally, as described in 
step 4 below. For example, change
SRCS  = $(MODEL).c $(MODULES) ert_main.c $(ADD_SRCS) $(EXT_SRC)

to

SRCS = $(MODULES) $(S_FUNCTIONS)

4 Create variables to define the final target of the makefile. You can remove 
any variables that may have existed for defining the final target. For 
example, remove

PROGRAM   = ../$(MODEL)
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and replace it with 

ifeq ($(MODELREF_TARGET_TYPE), NONE)
  # Top-level model for RTW
  PRODUCT            = $(RELATIVE_PATH_TO_ANCHOR)/$(MODEL)
  BIN_SETTING        = $(LD) $(LDFLAGS) -o $(PRODUCT) $(SYSLIBS) 
  BUILD_PRODUCT_TYPE = "executable"
  # ERT based targets
  SRCS               += $(MODEL).c ert_main.c $(EXT_SRC) 
  # GRT based targets
  # SRCS             += $(MODEL).c grt_main.c rt_sim.c $(EXT_SRC) $(SOLVER)

else
  # sub-model for RTW
  PRODUCT            = $(MODELLIB)
  BUILD_PRODUCT_TYPE = "library"
endif

5 Create rules for final target of makefile (replace any existing final target 
rule). For example:

ifeq ($(MODELREF_TARGET_TYPE),NONE)

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS) $(MODELREF_LINK_LIBS)

$(BIN_SETTING) $(LINK_OBJS) $(MODELREF_LINK_LIBS) $(SHARED_LIB) $(LIBS) 
@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

else

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS)

@rm -f $(MODELLIB)

ar ruvs $(MODELLIB) $(LINK_OBJS)

@echo "### Created $(MODELLIB)"

@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

endif

6 Create rule to allow submodels to compile files that reside in the MATLAB 
working directory (pwd).
%.o : $(RELATIVE_PATH_TO_ANCHOR)/%.c

$(CC) -c $(CFLAGS) $<
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Hook File Modifications
Optional hook files let you customize the build process and communicate 
information between various phases of the process. The hook files can be 
M-files and TLC files that are invoked at well-defined stages of the build 
process. If you are adapting your custom target for code generation 
compatibility with model reference features, consider adding checks to your 
hook files for handling referenced models differently than top models to 
prevent resource conflicts.

For example, consider adding the following check to your 
STF_make_rtw_hook.m file:

% Check if this is a referenced model
mdlRefTargetType = get_param(codeGenModelName,`ModelReferenceTargetType');
isNotModelRefTarget = strcmp(mdlRefTargetType, `NONE'); % NONE, SIM, or RTW
if isNotModelRefTarget
% code that is specific to the top-level model

else
% code that is specific to the referenced model

end

You may need to do a similar check in your TLC code.

%if !IsModelReferenceTarget()
%% code that is specific to the top-level model

%else
%% code that is specific to the referenced model
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Supporting the Shared Utilities Directory in the
Build Process

The shared utilities directory (slprj/target/_sharedutils) typically stores 
generated utility code that is common between a top-level model and the 
models it references. You can also force the build process to use a shared 
utilities directory for a standalone model. See “Project Directory Structure for 
Model Reference Targets” in the Real-Time Workshop documentation for 
details.

If you want your target to support compilation of code generated in the shared 
utilities directory, several updates to your template makefile (TMF) are 
required. Note that support for the shared utilities directory is a necessary, but 
not sufficient, condition for supporting Model Reference builds. See the 
preceding sections of this chapter to learn about additional updates that are 
needed for supporting Model Reference builds.

The exact syntax of the changes can vary due to differences in the make utility 
and compiler/archiver tools used by your target. The examples below are based 
on the GNU make utility. You can find the following updated TMF examples 
for GNU and Microsoft Visual C make utilities in the GRT and ERT target 
directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of 
the changes and additions described below.
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Note  The ERT-based TMFs contain extra code to handle generation of ERT 
S-functions and Model Reference simulation targets. Your target does not 
need to handle these cases.

Make the following changes to your TMF to support the shared utilities 
directory:

1 Add the following make variables and tokens to be expanded when the 
makefile is generated:

SHARED_SRC      = |>SHARED_SRC<|
SHARED_SRC_DIR  = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR  = |>SHARED_BIN_DIR<|
SHARED_LIB      = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source files 
in it. A typical expansion in a makefile is

SHARED_SRC      = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as in the 
following expansion.

SHARED_LIB      = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate 
directories for shared source files and the library compiled from the sourcefiles. 
In the current release, all TMFs actually use the same path, as in the following 
expansions.

SHARED_SRC_DIR  = ../slprj/ert/_sharedutils
SHARED_BIN_DIR  = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities are 
in use. Then append it to the overall INCLUDES variable.
SHARED_INCLUDES =
ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR) 
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
           $(USER_INCLUDES) $(SHARED_INCLUDES)
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3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.
$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c

$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following 
example is Unix-based.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created  $@ "

8 Add SHARED_LIB to the rule that creates the final executable.
$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) 
$(SHARED_LIB) $(SYSLIBS) 

@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c from your TMF. For 
example. change 

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)
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Note  If your target interfaces to a development environment that is not 
makefile based, you must make equivalent changes to provide the needed 
information to your target compilation environment.
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Introduction to Target Preferences
The target preferences mechanism discussed in this section is based on 
Simulink data classes and data objects. This document assumes that you are 
familiar with Simulink data classes, packages, and objects, and with the use of 
the Simulink Data Class Designer.

If you are not familiar with these topics, read the “Working with Data Objects” 
section of the Simulink documentation.

Target Preferences Classes, Objects, and Properties
Target developers have found that it is often desirable to associate certain 
types of data with the target. For example, an embedded target may offer users 
a choice of several supported development systems (cross-compilers, 
debuggers, and so on). To invoke the correct development tool during the build 
process, the target needs information such as the user’s choice of development 
tool, and the location on the host system where the user has installed the 
compiler and debugger executables. Other data associated with a target might 
specify host/target communications parameters, such as the communications 
port and baud rate to be used.

Target developers need a mechanism to define and store the properties they 
want to associate with their target. End users need a simple mechanism to set 
target property values. The target preferences feature meets these needs. 
Target preferences let you

• Structure the data associated with your target.

• Store data associated with your target persistently, across multiple models 
and across multiple MATLAB sessions.

• Provide end users with a simple GUI for changing, saving and loading their 
preferences. The target preferences feature also lets users perform the same 
functions from the MATLAB command line, or in M-files, with a simple set 
of commands.

To structure the data associated with your target, you define a target 
preferences class by specifying target properties and property types. The 
Simulink Data Class Designer simplifies this task.
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Your target preferences class inherits methods from a base class 
(RTW.TargetPrefs) provided by the Real-Time Workshop Embedded Coder. 
Inherited methods let you do the following with minimal effort:

• Manage persistent storage of preference data. The target preferences class 
stores such information to a MAT-file that can be easily retrieved, edited, 
and stored once again.

• Present a Property Inspector window to the end user, allowing for easy 
editing of preference property values.

You can also access target preferences through M-file utilities (for an example, 
see “Using Target Preferences in the Build Process” on page 8-13).You can use 
target preferences data during the build process by invoking such utilities from 
your TLC code. You can use the preference information in makefiles to invoke 
the user’s preferred compiler or perform other target-specific tasks.
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Creating Your Target Preferences Class
This section demonstrates the creation of a simple target preferences class 
using the Simulink Data Class Designer, and summarizes the methods 
inherited by this class.

This example assumes the skeletal target directory structure (as described in 
“Target Directory Structure and MATLAB Path” on page 4–4) has been created 
for an embedded target called z80. 

The following naming convention is recommended for target preferences 
classes and packages:

• The package name should be in the form
targetname

where targetname is the name of the target.

• The recommended class name is prefs.

Thus the recommended package.class naming convention is

targetname.prefs.

In this example, you define target preferences for a hypothetical embedded 
target for the Z80 microprocessor. The example defines a containing package 
z80, and a class prefs. The prefs class is a subclass of the RTW.TargetPrefs 
base class. The z80 package is stored in the directory z80\z80\@z80.

To create the package and class,

1 Set your working directory to a directory that is not located anywhere in the 
MATLAB directory tree (that is, in or under the matlabroot directory). By 
the convention described in “Target Directory Structure and MATLAB Path” 
on page 4-4, enter

cd z80\z80

2 Open the Simulink Data Class Designer by typing the following command 
at the MATLAB prompt.

sldataclassdesigner('Create', 'ShowRTWTargetPrefs')

3 To define the package, click the New button next to the Package name field 
of the Data Class Designer. Enter the package name, z80.
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4 Click OK to create the new package in memory.

5 In the package Parent directory field, enter the path of the directory where 
you want Simulink to create the new package. 

Note that Simulink creates the specified directory, if it does not already 
exist, when you save the package to your file system.

6 To define the target preferences class, click the New button on the Classes 
pane of the Data Class Designer dialog. Enter the name of the new class, 
prefs, in the Class name field on the Classes pane.

7 Click OK to create the new class in memory.

8 Select RTW.TargetPrefs as the parent class for the new class. To do this, 
first select the package name RTW from the left Derived from list box. Then, 
select the class name TargetPrefs from the right Derived from list box.

At this point, the Data Class Designer dialog resembles Figure 8-1 below. 
Note that the list of properties in the Properties of this class field is empty. 
This is because the RTW.TargetPrefs parent class provides only methods, 
not properties.
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Figure 8-1:  Package and Class Definitions for z80.prefs
Target Preferences Class

9 Populate the list of properties by entering several property names and 
assigning data types and factory (default) values to them. (see “Defining 
Class Properties” in the Simulink documentation.) Figure 8-2 below shows 
the Properties of this class field with two sample properties defined.
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Figure 8-2:  Property Definitions for z80.prefs
Target Preferences Class

10 Click Confirm changes. Simulink displays the Confirm changes pane (not 
shown). 

11 Select the package containing the new class definition and click Write 
Selected to save the new class definition.
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The directory z80\z80 now contains the package subdirectory,\@z80. The 
package subdirectory contains the class subdirectory, @prefs.

Note  Due to a Data Class Designer bug in the current release, you must 
enter embedded backslashes in string property values as double backslashes 
('\\'). If you use single backslashes ('\') errors may result. For example, in 
Figure 8-2, the default value for CompilerPath is entered as 
D:\\Applications\\AZ80CrossCompiler\\bin. MATLAB correctly parses the 
extra backslashes as escape sequences; therefore, pathnames are returned 
correctly from your target preferences objects.
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Target Preferences Class Methods
This section describes the methods that your target preferences class inherits 
from RTW.TargetPrefs.

To invoke these methods, instantiate an object of your target preferences class 
and use the syntax

method(objectname)

Note that to instantiate the target preferences object, you must use a static 
method, load, of the parent class RTW.TargetPrefs. For example:

z = RTW.TargetPrefs.load('z80.prefs');
disp(z)
    CompilerName: 'AZ80CrossCompiler'
    CompilerPath: 'D:\Applications\AZ80CrossCompiler\bin'

The inherited methods are summarized in this table.

Table 8-1:  Inherited Target Preferences Class Methods 

Method Description

disp Display the current property values of an object of the 
target preferences class in the MATLAB Command 
Window.

reset Reset the current property values of an object of the 
target preferences class to the default (factory) values.

getclassname Return the name of the class as a string.

gui Using an existing object of the target preferences class, 
load the current property values in memory, and 
display a Target Preferences Setup window. 
Figure 8-3 shows an example of such a window.
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load('package.class'[,
'structure]')

load is a static method of the parent class. Load the 
stored property values into an object of the package and 
class specified by the first argument. If the second 
argument is present, the return type is structure 
instead of object.

save Write out the current property values of an object of the 
target preferences class.

Table 8-1:  Inherited Target Preferences Class Methods  (Continued)

Method Description
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Making Target Preferences Available to the End User
End users of your target will not normally need to invoke the methods 
described in “Target Preferences Class Methods” on page 8-9 (with the possible 
exception of the gui method). They only need to know how to open the Target 
Preferences Setup window to set the target properties.

The Target Preferences Setup window (Figure 8-3) allows the user to

• View and edit the property values.

• Save the property values.

• Reset the property values to their default (factory) values.

• Cancel the edit session.

Figure 8-3:  Target Preferences Setup Window

The simplest way for users to access the Target Preferences Setup window is 
to invoke the gui method. This does not require you to provide any additional 
code.

A better approach, from the standpoint of usability, is to let the user open the 
the Target Preferences Setup window from an icon under your target’s 
toolbox in the MATLAB Start button. To make your target visible in the Start 
button, you must provide an info.xml file in the mytarget/mytarget directory 
(see “info.xml” on page 4-15).

To open the Target Preferences Setup window from the Start button, your 
info.xml file should also contain a section similar to the following example. 
This code provides a callback that executes when the user clicks on a standard 
icon in the Start button. The callback instantiates a z80 target preferences 
object and calls the gui method of that object.
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<listitem>
<label>Z80 Target Preferences</label>
<callback>z80TargetPrefs = RTW.TargetPrefs.load('z80.prefs'); 
gui(z80TargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

Only the text shown above in bold should be modified. 

Once you have added the preceding section to your info.xml file, your 
customized target preferences appear in the Start button menu.

Note  It is your responsibility to document the user-settable properties of 
your target. You should also document how users should access your target’s 
preferences.
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Using Target Preferences in the Build Process
This section discusses how to access your target preference data for use in the 
build process. “Accessing Target Preference Data from MATLAB” in Chapter 8 
illustrates two ways to access your target preference data in M code. The 
second section, “Accessing Target Preference Data from TLC” on page 8-13, 
describes how to return target preference data to a TLC variable.

Accessing Target Preference Data from MATLAB
Accessing target preference data from MATLAB or from an M-file is simpler 
than obtaining the same data in TLC. The following code instantiates a z80 
target preferences object in the MATLAB workspace, and loads the saved 
preferences data into the object. The CompilerName property is then directly 
accessed and assigned to a variable.

tp = RTW.TargetPrefs.load('z80.prefs');
targetName = tp.CompilerName;

The next section illustrates how to use the load method to return target 
preferences information to a TLC program.

Accessing Target Preference Data from TLC
You should create a mytarget_settings.tlc file to obtain target preferences 
data for use in the build process. The mytarget_settings.tlc file is invoked 
during the build process by a %include statement in the system target file. The 
mytarget_settings.tlc file is also useful for checking user code generation 
option settings, and other global settings affecting the code generation/build 
process.

As an example, consider the preferences for the z80 target defined in “Using 
Target Preferences in the Build Process” on page 8-13. A package/class 
z80.prefs is defined with properties CompilerName and CompilerPath, as 
shown in Figure 8-2.

The following TLC code examples from z80_settings.tlc show how to obtain 
the property values from the z80 target preferences and add them to the 
CompiledModel structure used in the build process.

This example performs a MATLAB evaluation of the load method (see previous 
section) that returns the property values to an intermediate TLC variable.
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%assign Z80PREFS = FEVAL("RTW.TargetPrefs.load","z80.prefs","structure")

The next example creates a structure (Settings) for the property values within 
the CompiledModel record and populates the fields in 
CompiledModel.Settings with the data from the z80 target preferences.

%addtorecord CompiledModel Settings Z80PREFS;

CompiledModel.Settings can now be used as required by subsequently 
executing TLC code.

Now, consider an example where the target property values could be used in 
the build process. Suppose that a requirement for the Z80 target is to support 
two compilers. The decision as to which compiler is to be invoked during the 
build process is based on the CompilerName property, as set by the user.

The default value of CompilerName is 'AZ80CrossCompiler'. The 
AZ80CrossCompiler compiler tool chain is well suited for use with makefiles. If 
this compiler is specified, it is invoked using gmake and a template makefile, as 
is the case with most compilers invoked by Real-Time Workshop targets. 
Normally, a template makefile uses the variable CPP_REQ_DEFINES to contain a 
list of all the arguments specific to settings made to the model.

The alternative supported compiler, CodeSamurai, uses project files and COM 
automation, rather than a template makefile. If this compiler is specified, a 
different action should be taken to create a list of model settings and a list of 
files to be included in the project file. The example code below invokes two TLC 
utilities (not shown) to generate a special header file (cpp_req_defines.h) and 
a list of files.

%if CompiledModel.Settings.CompilerName == "CodeSamurai"
%%
%% Generate cpp_req_defines.h and the list of RTW files resulting 
%%from code generation.
%%
%include "gen_cpp_req_defines_h.tlc" 
%include "gen_rtw_file_list.tlc"
%%
%else
 ... do something else for the the AZ80CrossCompiler compiler
%endif 
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Note that this code does not do any validation of the CompilerName setting. A 
more rigorous approach would be to define CompilerName as an enumerated 
type taking only two values. This would limit the user to a choice of two 
compiler names and avoid typing errors. Other validation could be done using 
the CompilerPath property. For example, the CompilerPath information could 
be used to access files located in the directories of the specified compiler, to 
detect that the proper compiler (or a specific required version of the compiler) 
was installed.
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Introduction
Unless you are developing a target purely for code generation purposes, you 
will want your embedded target to support a complete build process. A full 
post-code generation build process includes

• Compilation of generated code

• Linking of compiled code and runtime libraries into an executable program 
module (or some intermediate representation of the executable code, such as 
S-Rec format)

• Downloading the executable to target hardware with a debugger or other 
utility

• Initiating execution of the downloaded program

Supporting a complete build process is inherently a complex task, because it 
involves interfacing to cross-development tools and utilities that are external 
to Real-Time Workshop.

If your development tools can be controlled with traditional makefiles and a 
make utility such as gmake, it may be relatively simple for you to adapt existing 
target files (such as the ert.tlc and ert.tmf files provided by the Real-Time 
Workshop Embedded Coder) to your requirements. This approach is discussed 
in “The Makefile Approach” on page 9-3.

Automating your build process through a modern integrated development 
environment (IDE) presents a different set of challenges. Each IDE has its own 
way of representing the set of source files and libraries for a project and for 
specifying build arguments. Interfacing to an IDE may require generation of 
specialized file formats required by the IDE (for example, project files) and, and 
also may require the use of inter-application communication (IAC) techniques 
to run the IDE. One such approach to build automation is discussed in 
“Interfacing to an Integrated Development Environment” on page 9-4.
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The Makefile Approach
A template makefile provides information about your model and your 
development system. Real-Time Workshop uses this information to create an 
appropriate makefile (.mk file) to build an executable program. The Real-Time 
Workshop Embedded Coder provides a number of template makefiles suitable 
for host-based compilers such as LCC (ert_lcc.tmf) and Visual C++ 
(ert_vc.tmf). 

Adapting one of the existing template makefiles to your cross-compiler’s make 
utility may require little more than copying and renaming the template 
makefile in accordance with the conventions of your project.

If you need to make more extensive modifications, you need to understand 
template makefiles in detail. For a detailed description of the structure of 
template makefiles and of the tokens used in template makefiles, see Chapter 
6, “Template Makefiles.”

The following sections of this document supplement the basic template 
makefile information in the Real-Time Workshop documentation:

• “Supporting Multiple Development Environments” on page 5-33

• “Supplying Development Environment Information to Your Template 
Makefile” on page 3-17

• “mytarget_default_tmf.m” on page 4-11
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Interfacing to an Integrated Development Environment
This section describes techniques that have been used to integrate embedded 
targets with integrated development environment (IDEs):

• “Generating a CPP_REQ_DEFINES Header File” on page 9-4 describes how 
to generate a header file containing directives to define variables (and their 
values) required by a non-makefile based build.

• “Interfacing to the CodeWarrior IDE” on page 9-5 describes some problems 
and solutions specific to interfacing embedded targets with the MetroWerks 
CodeWarrior IDE. The examples provided in this section should help you to 
deal with similar interfacing problems with your particular IDE.

Generating a CPP_REQ_DEFINES Header File
In Real-Time Workshop template makefiles, the token CPP_REQ_DEFINES is 
expanded and replaced with a list of parameter settings entered with various 
dialogs. This variable often contains information such as MODEL (name of 
generating model), NUMST (number of sample times in the model), MT (model is 
multi-tasking or not), and numerous other parameters (see “Template 
Makefiles and Tokens” on page 6-2).

The makefile mechanism provided with Real-Time Workshop handles the 
CPP_REQ_DEFINES token automatically. If your target requires use of a project 
file, rather than the traditional makefile approach, you can generate a header 
file containing directives to define these variables and provide their values.

The following TLC file, gen_rtw_req_defines.tlc, provides an example. The 
code generates a C header file, cpp_req_defines.h. The information required 
to generate each #define directive is derived either from information in the 
model.rtw file (for example, CompiledModel.NumSynchronousSampleTimes), or 
from make variables from the rtwoptions structure (for example, 
PurelyIntegerCode).

%% File: gen_rtw_req_defines_h.tlc
%openfile CPP_DEFINES = "cpp_req_defines.h"
#ifndef _CPP_REQ_DEFINES_
#define _CPP_REQ_DEFINES_
#define MODEL %<CompiledModel.Name> 
#define ERT  1
#define NUMST %<CompiledModel.NumSynchronousSampleTimes>          
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#define TID01EQ %<CompiledModel.FixedStepOpts.TID01EQ> 
%%
%if CompiledModel.FixedStepOpts.SolverMode == "MultiTasking"
#define MT  1
#define MULTITASKING  1
%else
#define MT  0          
#define MULTITASKING  0 
%endif
%%
#define MAT_FILE  0
#define INTEGER_CODE %<PurelyIntegerCode>      
#define ONESTEPFCN %<CombineOutputUpdateFcns> 
#define TERMFCN %<IncludeMdlTerminateFcn>
%%
#define MULTI_INSTANCE_CODE  0
#define HAVESTDIO  0 
#endif
%closefile CPP_DEFINES

Interfacing to the CodeWarrior IDE
Interfacing an embedded target’s build process to the CodeWarrior IDE 
requires that two problems must be dealt with:

• The build process must generate a CodeWarrior compatible project file. This 
problem, and a solution, is discussed in “XML Project Import” on page 9-5. 
The solution described is applicable to any ASCII project file format.

• During code generation, the target must automate a CodeWarrior session 
that opens a project file and builds an executable. This task is described in 
“Build Process Automation” on page 9-9. The solution described is applicable 
to any IDE that can be controlled with Windows Component Object Model 
(COM) automation.

XML Project Import
This section illustrates how to use the Target Language Compiler (TLC) to 
generate an eXtensible Markup Language (XML) file, suitable for import into 
CodeWarrior, that contains all the necessary information about the source code 
generated by an embedded target.
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The choice of XML format is dictated by the fact that CodeWarrior supports 
project export and import with XML files. As of this writing, native 
CodeWarrior project files are in a proprietary binary format.

Note that if your target needs to support some other compiler’s project file 
format, you can apply the techniques shown here to virtually any ASCII file 
format (see “Generating a CPP_REQ_DEFINES Header File” on page 9-4).

To illustrate the basic concept, consider a hypothetical XML file exported from 
a CodeWarrior stationery project. The following is a partial listing:

<target>
<settings>
 
<\settings>
<file><name>foo.c<\name>
<\file>

<file><name>foobar.c<\name>
<\file>
<fileref><name>foo.c<\name>
<\fileref>

<fileref><name>foobar.c<\name>
<\fileref>

<\target>

Insert this XML code into an %openfile/%closefile block within a TLC file, 
test.tlc, as shown below. 

%% test.tlc
%% This code will generate a file model_project.xml,
%% where model is the generating model name specified in
%% the CompiledModel.Name field of the model.rtw file.
%openfile XMLFileContents = %<CompiledModel.Name>_project.xml
<target>

<settings>
 
<\settings>
<file><name>%<CompiledModel.Name>.c<\name>
<\file>
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<file><name>foobar.c<\name>
<\file>
<fileref><name>%<CompiledModel.Name>.c<\name>
<\fileref>

<fileref><name>foobar.c<\name>
<\fileref>

<\target>
%closefile XMLFileContents
%selectfile NULL_FILE

Note the use of the TLC token CompiledModel.Name. The token is resolved and 
the resulting file name is included in the output stream. You can specify other 
information, such as paths and libraries, in the output stream by specifying 
other tokens defined in model.rtw. For example, System.Name may be defined 
as <Root>/Susbsystem1.

Now suppose that test.tlc is invoked during a target’s build process, where 
the generating model is mymodel.mdl. This should be done after the 
codegenentry statement. For example, test.tlc could be included directly in 
the system target file:

%include "codegenentry.tlc"
%include "test.tlc"

Alternatively, the %include "test.tlc" directive could be inserted into the 
mytarget_genfiles.tlc hook file, if present.

TLC tokens such as 

<file><name>%<CompiledModel.Name>.c<\name>

are expanded, with the CompiledModel record in the mymodel.rtw file, as in

<file><name>mymodel.c<\name>

test.tlc generate an XML file, file model_project.xml, from any model. 
model_project.xml contain references to generated code files. 
model_project.xml can be imported into CodeWarrior as a project.

The following flowchart summarizes this process.
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proj.mcp: CodeWarrior 
project binary stationery file

proj.xml: XML project file

CodeWarrior (manual): Export to XML.

Text editor (manual): Add TLC tokens to 
generate references model files, MATLAB 
and other paths, and other settings. Embed t 
XML code marked with topkens in 
openfile/closefile block. Save as 
proj_gen.tlc.

proj_gen.tlc: TLC file for 
generating XML file

Model_project.xml: 
Generated XML project file 
file with generated file 
references and target-specific 
information

TLC: During code generation, expand TLC 
tokens and generate XML project file, 
Model_project.xml.

CodeWarrior (manual or with script): Import 
from XML.

CodeWarrior (manual or with script): Build 
project as indicated in “Build Process 
Automation” on page 9-9.

Model_project.mcp: 
CodeWarrior project binary 
file
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Note  This process has drawbacks. First, manually editing an XML file 
exported from a CodeWarrior stationery project can be a laborious task, 
involving modification of a few dozen lines embedded within several thousand 
lines of XML code. Second, if you make changes to the CodeWarrior project 
after importing the generated XML file, the XML file must be exported and 
manually edited once again.

Build Process Automation
An application that supports COM automation can control any other 
application that includes a COM interface. Using MATLAB COM automation 
functions, an M-file can command a COM-compatible development system to 
execute tasks required by the build process.

The MATLAB COM automation functions described in this section are 
documented in the “COM and DDE Support” section of the “External 
Interfaces/API” section of the MATLAB documentation.

For information about automation commands supported by CodeWarrior, see 
your CodeWarrior documentation.

COM automation is used by some embedded targets (for example, the 
Embedded Target for Motorola MPC555) to automate the Metrowerks 
CodeWarrior IDE to execute tasks such as:

• Opening a new CodeWarrior session

• Configure a project

• Loading a CodeWarrior project file

• Removing object code from the project

• Building or rebuilding the project

• Debug an application

COM technology automates certain repetitive tasks and allows the user to 
interact directly with the external application. For example, when the end user 
of the Embedded Target for Motorola MPC555 initiates a build, the target 
quickly invokes the necessary CodeWarrior actions and leaves a project built 
and ready to run with the IDE.



9 Interfacing to Development Tools

9-10

Example COM Automation Functions. The functions below use the MATLAB 
actxserver command to invoke COM functions for controlling CodeWarrior 
from a MATLAB M-file:

• CreateCWComObject: Create a COM connection to CodeWarrior.

• OpenCW: Open CodeWarrior without opening a project.

• OpenMCP: Open the CodeWarrior project file (.mcp file) specified by the input 
argument.

• BuildCW: Open the specified .mcp file, remove object code, and build project. 

These functions are examples; they do not constitute a full implementation of 
a COM automation interface. If your target creates the project file during code 
generation, the top-level BuildCW function should be called after the code 
generation process is completed. Normally BuildCW would be called from the 
exit method of your STF_make_rtw_hook.m file (see “STF_make_rtw_hook.m” 
on page 4-12).

In the code examples, the variable in_qualifiedMCP is assumed to store a fully 
qualified path to a CodeWarrior project file (for example, path, filename, and 
extension). For example:

in_qualifiedMCP = 'd:\work\myproject.mcp';

In actual practice, your code is responsible for determining the conventions 
used for the project file name and location. One simple convention would be to 
default to a project file model.mcp, located in your target’s build directory. 
Another approach would be to let the user specify the location of project files 
with the target preferences.
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%======================================================================
% Function: CreateCWComObject
% Abstract: Creates the COM connection to CodeWarrior 
%
function ICodeWarriorApp = CreateCWComObject
  vprint([mfilename ': creating CW com object']);
  try
    ICodeWarriorApp = actxserver('CodeWarrior.CodeWarriorApp');
  catch
    error(['Error creating COM connection to ' ComObj ...
       '. Verify that CodeWarrior is installed correctly. Verify COM access to 
CodeWarrior outside of MATLAB.']);
  end
  return;

%======================================================================
% Function: OpenCW
% Abstract: Opens CodeWarrior without opening a project. Returns the
%           handle ICodeWarriorApp.
%
function ICodeWarriorApp = OpenCW()
  ICodeWarriorApp = CreateCWComObject;
  CloseAll;
  OpenMCP(in_qualifiedMCP);

  
%=====================================================================
% Function: OpenMCP
% Abstract: open an MCP project file 
%
function OpenMCP(in_qualifiedMCP)
  % Argument checking. This method requires valid project file. 
  if ~exist(in_qualifiedMCP)
      error([mfilename ': Missing or empty project file argument']);
  end
  if isempty(in_qualifiedMCP)
      error([mfilename ': Missing or empty project file argument']);
  end
  ICodeWarriorApp = CreateCWComObject;
  vprint([mfilename ': Importing']);
  try
    ICodeWarriorProject = ...
      invoke(ICodeWarriorApp.Application,...
      'OpenProject', in_qualifiedMCP,...
      1,0,0); 
  catch
    error(['Error using COM connection to import project. ' ...
       ' Verify that CodeWarrior is installed correctly. Verify COM access to 
CodeWarrior outside of MATLAB.']);
  end  
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%=====================================================================
% Function: BuildCW
% Abstract: Opens CodeWarrior.
%           Opens the specified CodeWarrior project.
%           Deletes objects.
%           Builds. 
%
function ICodeWarriorApp = BuildCW(in_qualifiedMCP)
    % ICodeWarriorApp = BuildCW;
    ICodeWarriorApp = CreateCWComObject;
    CloseAll;
    OpenMCP(in_qualifiedMCP);
    try
      invoke(ICodeWarriorApp.DefaultProject,'RemoveObjectCode', 0, 1);
    catch
      error(['Error using COM connection to remove objects of current project. ' ... 
       'Verify that CodeWarrior is installed correctly. Verify COM access to 
CodeWarrior outside of MATLAB.']);
    end
    try
      invoke(ICodeWarriorApp.DefaultProject,'BuildAndWaitToComplete');
    catch
      error(['Error using COM connection to build current project. ' ...
       'Verify that CodeWarrior is installed correctly. Verify COM access to 
CodeWarrior outside of MATLAB.']);
    end
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Introduction
Device drivers that communicate with target hardware are essential to many 
real-time development projects. This chapter discusses issues and solutions in 
the creation of device drivers specifically for embedded targets. This process 
includes incorporating drivers into your Simulink model and into the code 
generated from that model.

This chapter describes techniques for implementing device drivers as fully 
inlined S-functions. Like other inlined S-functions, fully inlined device drivers 
have a dual implementation:

• A C MEX S-function is implemented, primarily for use in simulation.

• A TLC implementation is created for use in code generation.

This chapter does not discuss the implementation of noninlined device drivers 
in detail. Although the Real-Time Workshop Embedded Coder supports 
noninlined S-functions, you should use inlined device drivers for embedded 
applications, for reasons of efficiency. See “Inlined vs. Noninlined Drivers” on 
page 10-3 for a discussion of the tradeoffs.

Related Documentation
To implement device drivers, you should be familiar with the Simulink C MEX 
S-function format and API, and with the Target Language Compiler (TLC). 
These topics are covered in the following documents:

• The Writing S-Functions document describes C MEX S-functions and the 
S-function API in general. The Writing S-Functions document also describes 
how to access parameters from a masked S-function.

• The “Writing S-Functions for Real-Time Workshop” chapter of the Real-Time 
Workshop documentation is particularly important. It describes inlining, 
and how to use the special mdlRTW function to parameterize an inlined 
S-function. 

• “Using Masks to Customize Blocks” in the Using Simulink document 
describes how to create a mask for an S-function.

• The “External Interfaces/API” section in the MATLAB documentation 
explains how to write C and other programs that interact with MATLAB 
with the MEX API. The Simulink S-function API is built on top of this API. 
To pass parameters to your device driver block from MATLAB and/or 
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Simulink, you must use the MEX API. “External Interfaces/API Reference” 
in the MATLAB online documentation contains reference descriptions for 
the required MATLAB mx* routines.

• The Target Language Compiler documentation describes how to customize 
code generation for blocks and targets. Knowledge of the Target Language 
Compiler is required in order to inline S-functions. The Target Language 
Compiler documentation also describes the structure of the model.rtw file.

Tradeoffs in Device Driver Development

Hand Coding vs. S-Function Builder
Part of the task of device driver creation is to create a C MEX-file, primarily for 
use in simulation. Traditionally, C MEX-files are written manually, often using 
S-function template provided by Real-Time Workshop as a starting point. Most 
of this chapter is concerned with manually written device driver code. 

If you have little experience in writing S-functions, you can simplify the process 
of implementing your C MEX-file by using the Simulink S-Function Builder. 
This alternative is described in “Creating Device Drivers with the S-Function 
Builder” on page 10-30.

Note that use of the S-Function Builder does not completely eliminate the need 
to write code. You must still write TLC code to generate inlined code from your 
driver. Furthermore, the S-Function Builder only imports a subset of the 
S-Function API. Consequently, it may be necessary to modify the C MEX-files 
created by the S-Function Builder.

Inlined vs. Noninlined Drivers
You can use inlined or non-inlined S-functions with the Real-Time Workshop 
Embedded Coder. A benefit of non-inlined S-functions is that you do not have 
to write TLC code. However, for embedded systems development, fully inlined 
device drivers have numerous advantages. Inlined device drivers are an 
appropriate design choice when:

• You need production code generated from the S-function to behave 
differently than code used during simulation. This is almost always the case 
when developing device drivers. For example, an output device block may 
write to a hard device address in generated code, but during simulation, this 
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address may be illegal. The driver should therefore perform no output during 
simulation.

This dual behavior can be achieved in a noninlined S-function, but only by 
use of awkward compiler conditionals. 

• You want to avoid overhead associated with calling the S-function API.

• You want to avoid writing stub routines (to satisfy the S-function API) that 
have no purpose in your generated code.

• You want to reduce memory usage. Note that each noninlined S-function 
creates its own Simstruct. Each Simstruct uses over 1K of memory. Inlined 
S-functions do not allocate any Simstruct. 

• You want to take advantage of the mdlRTW function. Implementing a mdlRTW 
function gives you maximum flexibility in communicating parameter data 
from the model to the model.rtw file during code generation. The mdlRTW 
mechanism is only available to inlined S-functions.

In device driver development, achieving minimal memory usage and maximum 
code performance are usually the most important considerations. From this 
standpoint, there are no compelling reasons for creating noninlined drivers.

An Example Device Driver
This section provides an example of a manually written and fully inlined input 
device driver, ADC_examp, to accompany the discussions below. This driver 
supports the analog-to-digital converter (ADC) device on the Motorola HC12 
microcontroller. A complete driver implementation is available in the directory 

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

The driver files include

• ADC_examp.c: Source code for simulation driver S-function

• ADC_examp.dll: C-MEX file (for Windows platform) built from ADC_examp.c

• ADC_examp.tlc: TLC implementation for inlined code generation

• ADC_library.mdl: Simulink library containing masked S-function driver 
block for use in simulation

• ADC_examp_model.mdl: Simple example model that uses the block. This 
model is configured for ERT code generation only.
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ADC_examp is a simplified version of the ADC Input block provided by the 
Embedded Target for Motorola HC12. If you have licensed and installed the 
Embedded Target for Motorola HC12 and the required compiler and 
development boards, you can use this driver in simulation and generate, 
download, and run an executable with inlined driver code.

If you do not have the Embedded Target for Motorola HC12, you can use the 
ADC_examp driver in simulation and generate code only, using the ERT target. 
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Writing a Device Driver C-MEX S-Function
This discussion assumes that you are implementing a driver as a fully inlined 
S-function. For use in simulation, you must provide a C-MEX S-function. Since 
this S-function is used only in simulation, it is relatively simple to implement. 
The S-function may contain functions that:

• Initialize the SimStruct.

• Display information in the MATLAB window during simulation.

• Validate block parameter data input by the user.

• Implement a mdlRTW function for passing data to the model.rtw file.

You should use the S-function template provided by Real-Time Workshop as a 
starting point for developing your simulation driver S-function. The template 
file is

matlabroot/simulink/src/sfuntmpl_basic.c 

An extensively commented version of the S-function template is also available. 
See matlabroot/simulink/src/sfuntmpl_doc.c.

Alternatively, you can use the ADC_examp driver (see “An Example Device 
Driver” on page 10-4) as a starting point for your driver.

Your S-function must implement certain specific functions required by the 
S-function API. These are described in “Functions Required by S-Function 
API” on page 10-8.

Since these functions are private to the source file, you can incorporate 
multiple instances of the same S-function into a model.

Note  Device driver S-functions used in simulation should not contain code 
that is intended to operate in real time on the target hardware, or that 
accesses actual target hardware addresses. Since your target I/O hardware is 
not present during simulation, writing to addresses in the target environment 
can result in illegal memory references, overwriting system memory, and 
other severe errors. Similarly, read operations from nonexistent hardware 
registers can cause model execution errors.
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Required Defines and Include Files
Your driver S-function must begin with the following three statements, in the 
following order:

1 #define S_FUNCTION_NAME name

This defines the name of the entry point for the S-function code. name must 
be the name of the S-function source file, without the .c extension. For 
example, if the S-function source file is example_hc12_sfcn_adc_v.c.

#define S_FUNCTION_NAME example_hc12_sfcn_adc_v

2 #define S_FUNCTION_LEVEL 2

This statement defines the file as a level 2 S-function. This allows you to 
take advantage of the full feature set included with S-functions. Level-1 
S-functions are currently used only to maintain backwards compatibility.

3 #include simstruc.h

The file simstruc.h defines the SimStruct (the Simulink data structure) 
and associated accessor macros. It also defines access methods for the mx* 
functions from the MATLAB MEX API.

The final statement in your S-function is equally critical. Assuming that your 
S-function contains only simulation code, your code must end with the 
following.

#include "simulink.c"

simulink.c provides required functions interfacing to Simulink.

Other Preprocessor Symbols
Real-Time Workshop defines several preprocessor symbols that affect how 
S-functions are built. The conventions for use of these symbols are as follows:
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• MATLAB_MEX_FILE

When you build your S-function as a MEX-file with the mex command, 
MATLAB_MEX_FILE is automatically defined.

A test on MATLAB_MEX_FILE, such as the following, is useful in drivers that 
contain only simulation code intended for use in an S-function. This test 
ensures that the driver S-function is compiled only as a C MEX-file.
#ifndef MATLAB_MEX_FILE
#error "Fatal Error: ADC_examp.c can only be used to create C-MEX S-Function"
#endif

• MDL_START

The model execution loop calls mdlStart only if the symbol MDL_START is 
declared with a #define statement. If you write a mdlStart function without 
defining MDL_START, an “unreferenced function” compile-time warning occurs 
when you build your S-function, and the mdlStart code is never be called 
during simulation. See “mdlStart” on page 10-12 for an example.

Functions Required by S-Function API
The S-function API requires you to implement several functions in your 
simulation driver:

• mdlInitializeSizes specifies the sizes of various parameters in the 
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

If your device driver block is masked, your initialization functions can obtain 
the sample time and other parameters entered by the user in the block’s 
dialog. 

• mdlOutputs: For an input device, mdlOutputs usually outputs a nominal 
value (such as zero) on all channels during simulation. Another approach is 
to replicate the block’s inputs at the outputs. For an output device, 
mdlOutputs can be implemented as a stub.

• mdlTerminate: This function can be implemented as a stub.

In addition to the above, you may want to implement the mdlStart function. 
mdlStart is called once at the start of model execution. 

This following sections provide guidelines for implementing these functions. 
Code examples are taken from the example input device driver, ADC_examp.
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Macro and Symbol Definitions for ADC_examp.c
ADC_examp.c defines the following symbols and macros, referenced throughout 
the code examples below. Note how the example optimizes storage space by 
using an enum statement to define a set of masks that correspond to bit 
positions in a single word representing the device data.

#define TRUE    1
#define FALSE   0

/* Total number of block parameters */
#define N_PAR   5 

/* 
 *  CHANNELARRAY_ARG  - Array of ADC channels (one or more values between 0 and 7) 
 *                      Signal width is also determined from this list
 *  SAMPLETIME(S)     - Sample time
 %  ATDBANK(S)        - Bank 0, or Bank 1. Each bank provides 8 channels.
 *  USE10BITS(S)       - If (USE10BITS_ARGC==1), use 10-bits of ADC resolution
 *                      otherwise, use 8-bits ADC resolution
 *  LEFTJUSTIFY(S)    - If (LEFTJUSTIFY_ARGC==1), left justify the result in 
 *                      16-bit word. Else, use right justification (default)
 */

/* Define a set of masks that correspond to bit positions in a single word
* representing device data.
*/ 

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC, 
SAMPLETIME_ARGC};

#define ATDBANK(S)          (mxGetScalar(ssGetSFcnParam(S,ATDBANK_ARGC)))
#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))
#define USE10BITS(S)        (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))
#define LEFTJUSTIFY(S)      (mxGetScalar(ssGetSFcnParam(S,LEFTJUSTIFY_ARGC)))
#define SAMPLETIME(S)       (mxGetScalar(ssGetSFcnParam(S,SAMPLETIME_ARGC)))

mdlInitializeSizes 
The mdlInitializeSizes function specifies the sizes of various parameters in 
the SimStruct. In example below, this information partially depends upon the 
parameters passed to the S-function. See “Creating a User Interface for Your 
Driver” on page 10-16 for information on how to access parameter values 
specified in S-function dialogs.
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The mdlInitializeSizes function for the example input device driver, 
ADC_examp, is listed below.

static void mdlInitializeSizes(SimStruct *S)
{
    const unsigned int *paramPtr = mxGetData( CHANNELARRAY_ARG(S) );
    int nChannels, paramDataTypeFlag;
    /* Set and Check parameter count  */
      
    ssSetNumSFcnParams(S, N_PAR);
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) return;

    nChannels  = mxGetNumberOfElements( CHANNELARRAY_ARG(S) );

    /* Single input port of width equal to nChannels */
    if ( !ssSetNumInputPorts(  S, 1 ) ) return;
    ssSetInputPortWidth(       S, 0, nChannels );

    /* Single output port of width equal to nChannels */
    if ( !ssSetNumOutputPorts( S, 1 ) ) return;
    ssSetOutputPortWidth(      S, 0, nChannels );

   /* Set datatypes on input and output ports relative
    * to users choice of 8-, or, 10-bit resolution.
    */
    if (USE10BITS(S))
    {   
       /* 
        * Input and output datatypes are uint16
        * when using 10-bit ADC resolution 
        */
        ssSetInputPortDataType(  S, 0, SS_UINT16 );
        ssSetOutputPortDataType( S, 0, SS_UINT16 );
    } else {
       /* 
        * Input and output datatypes are uint8
        * when using 8-bit ADC resolution 
        */
        ssSetInputPortDataType(  S, 0, SS_UINT8 );
        ssSetOutputPortDataType( S, 0, SS_UINT8 );
    }
    
    ssSetInputPortDirectFeedThrough( S, 0, TRUE );

    /* sample times */
    ssSetNumSampleTimes( S, 1 );
    
    /* options */
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);  
    } /* end mdlInitializeSizes */

The above mdlInitializeSizes function does the following, in order:



Writing a Device Driver C-MEX S-Function

10-11

• Validates that the number of input parameters is equal to the expected 
number of parameters in the block’s dialog (N_PARS).

• Obtains nChannels, the number of ADC channels (specified as a vector in the 
Channels parameter of the block dialog). The widths of the input and output 
ports are set equal to nChannels. Notice that the code ensures that the block 
has exactly one input port and one output port.

• Obtains the user-selected resolution value (returned by USE10BITS) and sets 
the port data types for the block.

• Sets the direct feedthrough property of the block to TRUE. (In simulation, the 
ADC_examp output is replicated from the block input you would normally 
connect the ADC_examp input to a Ground.) 

Note that in many cases, input driver blocks do not have input ports. (Input 
ports can be used, however, to provide pass-through capability to a driver 
during simulation. See “Device Drivers in Simulation” on page 10-41 for 
further information.) If your input driver block has no input ports, set the 
number of input ports to 0.
ssSetNumInputPorts(S, 0);

• Calls ssSetNumSampleTimes to set the number of sample times to 1. This is 
correct for a driver where all ADC channels run at the same rate. Note that 
the actual sample period for the block is set in mdlInitializeSampleTimes.

• Specifies the following S-function option SS_OPTION_EXCEPTION_FREE_CODE. 
This option declares that the block does not throw exceptions. Use this option 
with care. See “Exception Free Code” in the Writing S-Functions 
documentation.

mdlInitializeSizes for Output Drivers. Note that initializing size information for an 
output device, such as a DAC, differs in several important ways from 
initializing sizes for an ADC: 

• Since a DAC obtains its inputs from other blocks, the number of channels is 
equal to the number of inputs.

A DAC is a sink block. That is, it has input ports but typically has no output 
ports. (Output ports can be used, however, to provide pass-through 
capability to a driver during simulation. See “Device Drivers in Simulation” 
on page 10-41 for further information.) If your output driver block has no 
output ports, set the number of output ports to 0.
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ssSetNumOutputPorts(S, 0);

• A DAC block has direct feedthrough. The DAC block cannot execute until the 
block feeding it updates its outputs.

mdlInitializeSampleTimes
Device driver blocks are discrete blocks, requiring you to set a sample time. The 
procedure for setting sample times is the same for both input and output device 
drivers. Assuming that all channels of the device run at the same rate, the 
S-function has only one sample time.

The following implementation of mdlInitializeSampleTimes (from 
ADC_examp) obtains the sample time from the block’s dialog. The sample time 
offset is set to 0.

static void mdlInitializeSampleTimes(SimStruct *S)
{
    ssSetSampleTime( S, 0, SAMPLETIME(S) ); 
    
} /* end mdlInitializeSampleTimes */

mdlStart
mdlStart is an optional function. It is called once at the start of model 
execution. In ADC_examp, mdlStart simply displays a message in the MATLAB 
Command Window:

#define MDL_START  /* Change to #undef to remove function */
#if defined(MDL_START) 
static void mdlStart(SimStruct *S)
{
/* During simulation, just print a message */
  if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
    mexPrintf("\n ADC_examp driver: Simulating initialization\n");
    }
}
#endif /*  MDL_START */
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Note  The model execution loop calls mdlStart only if the symbol MDL_START 
is declared as shown above. If you write a mdlStart function without defining 
MDL_START, an “unreferenced function” compile-time warning occurs when you 
build your S-function, and the mdlStart code is never be called during 
simulation.

mdlOutputs
All S-functions implement a mdlOutputs function to calculate block outputs. 
For many simulation drivers, this is a simple task. In the simplest case, the 
mdlOutputs function for an input simulation driver generates a nominal value 
(usually 0), on all channels. The following code fragment, from a hypothetical 
simulation driver for an ADC with a fixed number of channels, illustrates this 
approach.

for (i = 0; i < NUM_CHANNELS; i++){
y[i] = 0.0;

}

An output simulation driver, which is a sink, can often be implemented as a 
stub.
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The ADC_examp driver implements a more complex mdlOutputs function, listed 
below.

static void mdlOutputs(SimStruct *S, int_T tid)
{
    /* 
     * Get "uPtrs" for input port 0 and 1.  
     * uPtrs is essentially a vector of pointers because the input signal may 
     * not be contiguous.  
     */
    
    DTypeId   y0DataType;   /* SS_UINT8 or SS_UINT16 */
    int_T     y0Width    = ssGetOutputPortWidth(S, 0);
    InputPtrsType u0Ptrs = ssGetInputPortSignalPtrs(S,0);
    
    /* 
     * Get data type Identifier for output port 0. 
     * This matches the data type ID for input port 0.
     */
     
    y0DataType = ssGetOutputPortDataType(S, 0);
    y0Width    = ssGetOutputPortWidth(S, 0);

    /* 
     * Set output signals equal to input signals
     * for either 16 bit, or 8 bit signals.
     */
     
    switch (y0DataType)
    {
        case SS_UINT8:
        {
            uint8_T           *pY0 = (uint8_T *)ssGetOutputPortSignal(S,0);
            InputUInt8PtrsType pU0 = (InputUInt8PtrsType)u0Ptrs;
            int     i;
            /* Set all outputs equal to inputs */
            for( i = 0; i < y0Width; ++i){
                pY0[i] = *pU0[i];
                /* For 8-bit ADC results, left-justify is ignored. */
            }
            break;
        }
        case SS_UINT16:
        {
            uint16_T           *pY0 = (uint16_T *)ssGetOutputPortSignal(S,0);
            InputUInt16PtrsType pU0 = (InputUInt16PtrsType)u0Ptrs;
            int     i; 
        
            for( i = 0; i < y0Width; ++i){              
                /* Set all outputs equal to inputs */
                if (LEFTJUSTIFY(S)) {
                    /* Shift left for left justify */
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                    pY0[i] = *pU0[i]<<6;
                } else {
                    /* No shift required for right justify */
                    pY0[i] = *pU0[i];
                }
            }                                        
            break;
        }
    } /* end switch (y0DataType) */

} /* end mdlOutputs */

This mdlOutputs function is designed to handle the following requirements:

• Rather than simply generating zeroes, the block passes through an input 
signal for use in simulation by simply setting outputs equal to inputs.

• I/O ports are variably typed to be either uint8 or unit16, depending on the 
user’s choice of ADC resolution. The port data type is obtained with the call
y0DataType = ssGetOutputPortDataType(S, 0);

A switch(y0DataType)statement then determines how the input signal is 
passed to the output. In the 16-bit case, the data may be right-shifted 
(justified).

• I/O port widths are variable, in accordance with the number of ADC channels 
(specified as a vector in the Channels parameter of the block dialog). The 
port width is obtained with the call
int_T y0Width = ssGetOutputPortWidth(S, 0);

y0Width is then used to control iteration over the I/O signals:

for( i = 0; i < y0Width; ++i){
pY0[i] = *pU0[i];

}

mdlTerminate
In ADC_examp, the mdlTerminate function is provided as a stub, to satisfy the 
requirements of the S-function API.

static void mdlTerminate(SimStruct *S)
{
} /* end mdlTerminate */
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Creating a User Interface for Your Driver
You can add a custom icon, dialog, and initialization commands to an 
S-Function block by masking it. This provides an easy-to-use graphical user 
interface for your device driver in the Simulink environment.

This section uses examples drawn from an actual masked device driver block. 
You should have basic familiarity with the creation and use of masked blocks. 
These topics are discussed in the Using Simulink and Writing S-Functions 
documentation.

The example driver, ADC_examp, is an input device driver.

ADC_examp illustrates a number of techniques for parameterizing a driver by 
letting the user enter hardware-related variables. Figure 10-1 shows the dialog 
that ADC_examp presents to the user. Parameter values are shown at their 
default values.

Figure 10-1:  Dialog for ADC_Examp Driver Block

The Simulink user can enter the following parameters:

ADC bank (menu): Selects one of two 8-channel ADC banks (either bank 0 or 
1).

Channels (edit field): Specifies input channel(s) to be read. Channels are 
numbered in the range 0-7. Selected channels are represented as a vector.
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ADC resolution (menu): Selects either 8 bits or 10 bits of resolution. If 10 bit 
resolution is selected, the input signal data is stored in 16 bits.

Word alignment: If ADC resolution is set to 10 bits, the user can select either 
right or left justification of input data within a 16-bit word. Default is right 
justification.If ADC resolution is set to 8 bits, input data is stored as a uint8, 
and Word alignment is ignored.

Sample time (menu): Sample time for the block.

You specify block parameters in Parameters pane of the Simulink Mask 
Editor. Figure 10-2 shows how the parameter section of the mask is defined for 
the ADC_Examp driver. In the ADC_Examp driver, block parameters are declared 
nontunable in the block mask. If you do not do this, you can declare parameters 
nontunable by using the ssSetParameterTunable macro in the 
mdlInitializeSizes routine. Nontunable S-function parameters become 
constants in the generated code, improving performance.

In certain cases, you may want your driver block to be selfmodifying. For 
example, the block may have a parameter that lets the user set the number of 
input or output ports on the block. In such cases, you should select the Allow 
library block to modify its contents option in the Initialization pane of the 
Mask Editor (see “The Mask Editor” in the Simulink documentation).
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Figure 10-2:  Parameter Mask definition for ADC_Examp Block

The block parameters underlying the mask (see Figure 10-3) provide a binding 
to the C-MEX S-function (DLL) for use in simulation, and a list of parameter 
variables corresponding to the S-function parameters field. Note that:

• Values returned from menus are offset by -1 (because menus are 1-based).

• Parameter variables, except sampletime, are explicitly cast to unsigned 
integer data types. The S-function parameters field contains the following 
list of expressions.

uint8(bank-1), uint16(channels), uint8(use10bits-1), uint8(left_justify-1),
sampletime

During the build process, parameter expressions are evaluated and the 
resultant values are written to Parameter records in the model.rtw file. 
These records are used when code is generated by the TLC implementation 
of the block (see “Inlining the S-Function Device Driver” on page 10-23).
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Figure 10-3:  Block Parameters Underlying ADC_Examp Block

It is typical for a device driver block to read and validate input parameters in 
its mdlInitializeSizes function. A masked S-Function block obtains 
parameter data from its dialog using macros and functions provided for the 
purpose. Let’s examine some cases from the mdlInitializeSizes function of 
ADC_Examp.c.

Obtaining and Using a Scalar Parameter
In the following code excerpt, the macro USE10BITS is defined. When invoked, 
USE10BITS returns the value obtained from the ADC resolution menu.
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enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC, 
SAMPLETIME_ARGC};
...
#define USE10BITS(S)        (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))
...
/* Set datatypes on input and output ports relative
    * to users choice of 8-, or, 10-bit resolution.
    */
    if (USE10BITS(S))
    {   
       /* 
        * Input and output datatypes are uint16
        * when using 10-bit ADC resolution 
        */
        ssSetInputPortDataType(  S, 0, SS_UINT16 );
        ssSetOutputPortDataType( S, 0, SS_UINT16 );
    } else {
       /* 
        * Input and output datatypes are uint8
        * when using 8-bit ADC resolution 
        */
        ssSetInputPortDataType(  S, 0, SS_UINT8 );
        ssSetOutputPortDataType( S, 0, SS_UINT8 );
    }

The parameter from the dialog is accessed with the ssGetSFcnParam macro. 
The arguments to ssGetSFcnParam are a pointer to the block’s Simstruct, and 
the index (0-based) to the desired parameter.

Parameters are stored in arrays of type mxArray, even if there is only a single 
value. In the above code, the value of the first element of the mxArray returned 
by ssGetSFcnParam is obtained with the mxGetScalar function. 

The value returned by USE10BITS is used to set the port data types for the 
block, in accordance with the user-selected resolution. The larger (uint16) data 
type is used only when necessary.

Obtaining and Using a Vector Parameter
This section shows another code excerpt that illustrates the use of a vector 
parameter. You enter the Channels parameter as a vector of channels in the 
range 0..7. The macro CHANNELARRAY_ARG returns this vector, and the 
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mxGetNumberOfElements function is called to obtain the number of vector 
elements. The port widths for the block are set accordingly.

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC, 
SAMPLETIME_ARGC};
...
#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))
...
nChannels  = mxGetNumberOfElements( CHANNELARRAY_ARG(S) );

    /* Single input port of width equal to nChannels */
    if ( !ssSetNumInputPorts(  S, 1 ) ) return;
    ssSetInputPortWidth(       S, 0, nChannels );

    /* Single output port of width equal to nChannels */
    if ( !ssSetNumOutputPorts( S, 1 ) ) return;
    ssSetOutputPortWidth(      S, 0, nChannels );

The MathWorks recommends that you study the entire mdlInitializeSizes 
function of ADC_Examp.c for further examples of the use of masked block 
parameters in the context of a device driver.
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Building the MEX-File and the Driver Block
This section outlines how to build a MEX-file from your driver source code for 
use in Simulink. For full details on how to use mex to compile an executable 
MEX-file, see “External Interfaces/API” in the MATLAB online 
documentation:

1 Your C S-function source code should be in your working directory. To build 
a MEX-file from mydriver.c, type

mex mydriver.c

mex builds mydriver.dll (PC) or mydriver (UNIX).

2 Add an S-Function block (from the Simulink Functions & Tables library in 
the Library Browser) to your model.

3 Double-click the S-Function block to open the Block Parameters dialog. 
Enter the S-function name mydriver. The block is now bound to the 
mydriver MEX-file.

4 Create a mask for the block if you want to use a custom icon or dialog (see 
“Creating a User Interface for Your Driver” on page 10-16).

5 You should create a block library and add your driver to it, or add your driver 
to an existing block library. See “Working with Block Libraries” in the Using 
Simulink document to learn how to do this.

Making Your Drivers Available to Users
Your driver implementation files should be stored in a directory that is on the 
MATLAB path. You should create a blocks directory under your target root 
directory (for example, mytarget/blocks). The blocks directory should contain

• Compiled block MEX- files

• C source code for the blocks

• TLC inlining files for the blocks

• Library models for the blocks. You should place your blocks in one or more 
libraries.
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Inlining the S-Function Device Driver 
This section explains how to inline the S-function device driver. Topics include:

• “Code Components” on page 10-23

• “Inlined Device Driver Operations” on page 10-24

• “Inlining the Example ADC Driver” on page 10-24

Code Components
To create a fully inlined device driver, you must provide the following 
components:

• driver.c: C MEX S-function source code, implementing the functions 
required by the S-function API for a simulation driver. (See “Writing a 
Device Driver C-MEX S-Function” on page 10-6.) For these functions, only 
the code for simulation in Simulink is required.

Optionally, driver.c may implement a mdlRTW function. The sole purpose of 
this function is to evaluate and format parameter data during code 
generation. The parameter data is output to the model.rtw file. See “Passing 
and Obtaining Block Parameter Values with mdlRTW” on page 10-26.

It is important to ensure that driver.c does not attempt to read or write 
memory locations that are intended to be used in the target hardware 
environment. The real-time driver implementation, generated with a 
driver.tlc file, should access the target hardware.

• driver.ext : MEX-file built from your C MEX S-function source code. The 
filename extension ext varies depending on the platform. For example, on 
the PC, the extension is .dll.

This component is used:

- In simulation: Simulink calls the simulation versions of the required 
functions

- During code generation: If a mdlRTW function exists in the MEX-file, the 
code generator executes it to write parameter data to the model.rtw file.

• driver.tlc: TLC functions that generate real-time implementations of the 
functions required by the S-function API.

• Hardware support files: Header files, macro definitions, or code libraries that 
may be provided with your I/O devices or cross-development system. It may 
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be necessary to generate #include statements or other directives required 
for using such support files. See “Generating Target-Specific Compiler 
Directives” on page 10-25 for information on how to generate these 
directives.

Inlined Device Driver Operations
Typical operations performed by an inlined device driver include

• Initializing the I/O device. For example, the driver may need to write specific 
values to one or more control registers to set the device into a desired mode 
of operation.

• Calculating the block outputs. How this is done depends upon the type of 
driver being implemented:

- An input driver for a device such as an ADC usually reads values from an 
I/O device and assigns these values to the block’s output vector y.

- An output driver for a device such as a DAC usually writes values from the 
block’s input vector u to an I/O device.

• Terminating the program. This may require setting hardware to a “neutral” 
state; for example, zeroing DAC outputs.

In generated code, these operations are usually executed within the standard 
model functions, such as model_initialize, model_step, and model_terminate. 

Inlining the Example ADC Driver
As an aid to understanding the process of inlining a device driver, this section 
describes the TLC implementation of the ADC_examp driver. Full TLC source 
code for ADC_examp.tlc is provided in the directory

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

The TLC implementation of the ADC_examp driver is somewhat simpler than 
the simulation code. It contains only three TLC functions:

• The Start function generates code that is inlined into the model_initialize 
function. The code initializes several control registers of the HC12 ADC 
device.
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• The Outputs function generates code that is inlined into the model_step 
function. The code reads data from one or more ADC channels. The data is 
assigned to the block outputs.

• The BlockTypeSetup function generates #include directives and symbol 
definitions for use with the Metrowerks CodeWarrior compiler for the 
Motorola HC12.

Generating Target-Specific Compiler Directives
Device driver code often references target-specific symbols that are defined 
externally to the generated code. These symbols represent specific hardware 
registers, memory addresses, or operating system functions. For example, the 
Start and Outputs functions described above generate code to read and write 
various HC12 ADC registers. 

These are typically defined in header files provided by the vendor of the target 
hardware or the cross-development system that compiles the generated code.

Such references are resolved by generating compiler directives (such as 
#include or #define statements). These directives can be generated:

• By the device driver block itself. This is often done in the BlockTypeSetup 
function of the driver TLC implementation. (See the discussion of the 
ADC_Examp example below.)

• By a “master” device driver block. Some targets (such as the Embedded 
Target for Motorola MPC555 the Embedded Target for Motorola HC12) 
implement a master block that manages hardware resources for multiple 
drivers. Such targets require inclusion of the master block in the model. 
Accordingly, the BlockTypeSetup function for the master block can generate 
the includes required by all the other blocks.

Example BlockTypeSetup Function. The ADC_Examp driver implements a 
BlockTypeSetup function that illustrates one possible approach to the 
generation of compiler directives for a particular cross-development system. 
This BlockTypeSetup function generates only #include statements and 
symbol definitions. The generated code is written to the model_private.h 
function.

The generated directives are intended for use with the Metrowerks 
CodeWarrior compiler for the Motorola HC12 (Version 2.0 or 1.2). The included 
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header files define all the symbols required to compile code generated by 
ADC_Examp.tlc when included in a Metrowerks CodeWarrior project. 

The BlockTypeSetup function uses the recommended cacheing function 
(LibCacheIncludes) for generating #include statements. For details, see the 
following sections in the Target Language Complier documentation:

• “TLC Function Library Reference” describes the use of the 
LibCacheIncludes function.

• “Block Functions” describes the BlockTypeSetup function in general.

Passing and Obtaining Block Parameter Values with mdlRTW
The driver S-function (ADC_examp.c) implements a mdlRTW function to pass 
user-entered parameter values (ADC bank, Channels, ADC resolution, and 
Word alignment) to the model.rtw file.

The mdlRTW function is a mechanism by which a C-MEX S-function can 
generate and write data structures to the model.rtw file. The Target Language 
Compiler, in turn, uses these data structures when generating code. The 
simplest application of mdlRTW is to pass block parameter data into the 
model.rtw file. However, mdlRTW also lets you compute virtually any useful 
data and pass it into the model.rtw file.

Unlike the other functions in a simulation driver, mdlRTW executes at code 
generation time. The mdlRTW mechanism is fully described in the The “Writing 
S-Functions for Real-Time Workshop” chapter of the Real-Time Workshop 
documentation. This section shows the use of mdlRTW in the ADC_examp device 
driver.

The mdlRTW function in ADC_examp.c obtains user-entered paraneter values 
using the symbol and macro definitions described in “Macro and Symbol 
Definitions for ADC_examp.c” on page 10-9. It then generates a structure that 
contains these values in the model.rtw file. Macros (such as 
SSWRITE_VALUE_DTYPE_NUM) are defined for this purpose. These macros are 
described in the Writing S-Functions documentation.



Inlining the S-Function Device Driver

10-27

The mdlRTW function from ADC_examp.c is listed below.

static void mdlRTW(SimStruct *S)
{
    uint8_T   atdbank     = (uint8_T) ATDBANK(S);
    uint16_T *channels    = (uint16_T *) mxGetData(CHANNELARRAY_ARG(S));
    uint8_T   use10BitRes = (uint8_T) USE10BITS(S);
    uint8_T   leftjustify = (uint8_T) LEFTJUSTIFY(S);

    /* Write out parameters for this block.*/
    if (!ssWriteRTWParamSettings(S, 4,
                                 SSWRITE_VALUE_DTYPE_NUM,"ATDBank",
                                 &atdbank,DTINFO(SS_UINT8, COMPLEX_NO),

                                 SSWRITE_VALUE_DTYPE_VECT, "Channels",
                                 channels,
                                 mxGetNumberOfElements(CHANNELARRAY_ARG(S)),
                                 DTINFO(SS_UINT16, COMPLEX_NO),

                                 SSWRITE_VALUE_DTYPE_NUM,"Use10BitRes",
                                 &use10BitRes,DTINFO(SS_UINT8, COMPLEX_NO),

                                 SSWRITE_VALUE_DTYPE_NUM,"LeftJustify",
                                 &leftjustify,DTINFO(SS_UINT8, COMPLEX_NO)
                                 )) {
        return; /* An error occurred which will be reported by SL */
    }
}

A typical model.rtw structure generated by this mdlRTW function is

SFcnParamSettings {
ATDBank 1U
Channels [0U]
Use10BitRes 0U
LeftJustify 1U
}

The field values of SFcnParamSettings derive from data that you enter.

Values stored in the SFcnParamSettings structure are referenced in the TLC 
block implementation, as in the following code excerpt:

%assign Use10BitResolution = CAST("Number",SFcnParamSettings.Use10BitRes)
%assign LeftJustify        = CAST("Number",SFcnParamSettings.LeftJustify)

See “Start Function” below, and the ADC_examp.tlc code, for further examples 
of how the SFcnParamSettings structure is used to generate code for the driver 
block.
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Note  During code generation, Real-Time Workshop writes run-time 
parameters automatically to the model.rtw file, eliminating the need for an 
S-function to perform this task with a mdlRTW method. However, these 
run-time parameters are always tunable. Generally, it is not appropriate for 
device driver parameters to be tunable. Thus, the need to use the more 
lengthy approach of using the S-function parameter settings for device 
drivers. See the discussion of runtime parameters in the Writing S-Functions 
documentation for further information.

Start Function
The purpose of the Start function, in the TLC file ADC_examp.tlc, is to 
generate code that initializes several 8-bit control registers of the HC12 ADC 
device. Each ADC bank (0 or 1) has a separate set of control registers. The bank 
number is the only variable. Regardless of which bank is selected, the same set 
of registers is initialized to the same set of bit values.

The symbolic naming convention for these registers is

ATDbCTLr

where b is the user-selected ADC bank and r is a register number. For 
example, ATD0CTL1 represents bank 0, control register 1.

The Start function obtains the value for b from the SFcnParamSettings 
structure (see “Passing and Obtaining Block Parameter Values with mdlRTW” 
on page 10-26) and uses the returned value in a string substitution, as in the 
following code excerpt.

%assign atdBank = CAST( "Number",SFcnParamSettings.ATDBank) 
  ... 
ATD%<atdBank>CTL2 = 0x80; 

For bank 1, this would generate the following statement in the 
model_initialize function.

ATD1CTL2 = 0x80;

Note also that the Start function generates extensive comments in the code, 
documenting each register bit setting. A block comment is also generated. You 
should follow this practice.
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Outputs Function
The Outputs function generates code that repeats the same operations (as 
inlined code) for all selected ADC channels on the selected ADC bank. For each 
channel (channelIdx):

• A data conversion is initiated by setting the appropriate channel bits 
(channelIdx) on ADC control register 5. As in the Start function, the bank 
parameter is substituted into the register symbol.
(ATD%<atdBank>CTL5)

The resultant code, for bank 1, channel 0, is
/* Start conversions on selected ADC channels */
ATD1CTL5 = 0x80;

• The driver continually checks a status register until a conversion completion 
flag is asserted. The status register symbol is generated by concatenating the 
current channelIdx and bank parameters.
(CCF%<channelIdx>_%<atdBank>)

The resultant code, for bank 1, channel 0, is
while (CCF0_1 & 0) {

/* Wait for Conversion Complete Flag (CCFx)
* for a conversion on this channel. 
/* 

}

• When conversion completes, data is read from a data register for the current 
bank and channel. Again the register symbol is formed by string substitution 
of the current channelIdx and bank parameters.
ATD%<atdBank>DR%<channelIdx>;

The data read from the register is cast to the required data size and 
left-shifted (justified) if required. The result is assigned to the block output.

The code generated for each channel consists of a single line. For example, 
for the case where 10 bit resolution with left justification is selected.

/* 10-bit resolution */
/* Left-justified ADC result */
ADC_examp_model_B.ADC_out = (uint16_T) ATD1DR0 << 6;
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Creating Device Drivers with the S-Function Builder
Traditionally, device drivers used with Simulink and Real-Time Workshop 
Embedded Coder have relied on a dual implementation. For simulation use, 
you write a device driver block as a Simulink S-function. You also must write 
a TLC file for inlined code generation purposes.

During simulation, Simulink requires a MEX-file (a .dll file on the PC 
platform) for an S-function. This MEX-file must provide information such as:

• Number of input signals

• Data types of input signals

• Number of output signals

• Data types of output signals

• Number of parameters for the block

• Data types of parameters

During simulation, the block should provide outputs even if the value is trivial 
(such as 0 or 1). Assuming the output device is designed so that it has an output 
signal (in simulation), the appropriate output signal should be provided by the 
S-function MEX-file.

Defining the correct simulation output for a device driver block is beyond the 
scope of this discussion. The focus of this discussion is how to create driver 
blocks for the purpose of generating code with Real-Time Workshop Embedded 
Coder.

To create a MEX-file for your S-function, you can

• Write the S-function manually. The Writing S-Functions documentation 
covers this topic.

• Use the Simulink S-Function Builder as a shortcut. If you have little 
experience in writing S-functions, you should use the S-Function Builder.
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Note  Currently, the S-Function Builder does not support a device driver 
mode. Consequently, device driver code resulting from its use may be less 
optimized than S-function driver code written by hand. Also, since the 
S-Function Builder supports only a subset of the S-function API, driver code 
that you produce with the S-Function Builder may lack some desired features.

This documentation describes the S-Function Builder in sufficient detail for 
you to get started building device drivers. For a full description of the 
S-Function Builder, see the Simulink documentation.

In the following sections, you create a simple device driver S-function using the 
S-Function Builder. 

Example Device Driver Specification
The driver, mypwm, supports one channel of pulse width modulation (PWM) 
output. The period of the output signal is fixed. The block has one input, which 
accepts an 8-bit (type uint8) modulator signal. The duty cycle of the PWM 
output signal is proportional to the input signal. The hardware address of the 
input port is 0x18h and is to be symbolically defined in generated code as 
PORTA.

Building the MEX-File
The first task is to specify the signals and other properties of the driver, and to 
generate a MEX-file component:

1 Create a new Simulink model.

2 Copy an instance of the S-Function Builder block from the Simulink 
User-Defined Functions library into the new model. Open the Simulink 
Library Browser.

3 Double-click the block to open the S-Function Builder dialog.

4 Enter the name of the S-function, mypwm, in the S-function name field. 

5 Select the Initialization pane. Make sure that all numeric parameters are 
set to their defaults (zero) and that Sample mode is set to Inherited.
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6 Select the Data Properties pane.

7 In the Port and Parameter properties pane, select Input ports. Specify 
the input (PWM modulator) port as follows:

- Port name: u0

- Data type: uint8

- Other properties: use defaults

8 Still in the Port and Parameter properties pane, select Output ports. 
Specify the output (PWM signal) port as follows:

- Port name: y0

- Data type: uint8

- Other properties: use defaults

Note  By default, the Port and Parameter properties pane specifies one 
input and one output port. However. many device drivers require only an 
input port or only an output port. For example, an input driver for an 
analog-to-digital converter requires only an output. In such cases, you should 
select the port that is not needed in the Port and Parameter properties pane 
and delete it.

9 Leave all fields under the Parameters tab blank. In a real-world driver, you 
might parameterize hardware settings or other options and add them to 
your block’s mask. For simplicity, this example assumes no parameters are 
used.

10 Leave the Libraries pane unchanged. The driver does not refer to any 
external source or object files.

11 Select the Outputs pane and insert a line of C code.

y0[0] = u0[0];

This allows the input signal to pass through this block unchanged during 
simulation.
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12 Do not place any additional code under the Continuous Derivatives or 
Discrete Update panes.

13 Select the Build Info pane. Make sure the Generate wrapper TLC option 
is selected. All other options should be deselected.

14 Click Build. The S-function Builder generates several files in your working 
directory. The names of the generated files are displayed in the Build Info 
pane. Two of them are of interest to us later on:

- mypwm.dll: MEX-file component for use in simulation.
- mypwm.tlc: TLC code for generating wrapper S-function.

15 Deselect the Generate wrapper TLC option. You edit the generated TLC 
file, and do not regenerate the TLC file and overwrite edited code.

16 Close the S-Function Builder. 

17 Save your model.

Binding the MEX-File to an S-Function Block
In this section you create a binding between the previously created MEX-file 
and a standard Simulink S-function block:

1 Copy an instance of the S-Function block from the Simulink User-Defined 
Functions library into your model.

2 Double-click on the S-Function block to open its dialog. Enter mypwm as the 
S-Function name property.

3 Click Apply and close the dialog.

4 Label the S-Function block pwm driver.

5 Save the model.

In developing a real-world driver, you would place the pwm driver S-Function 
block into your own drivers library. It is also good practice to keep S-Function 
blocks that link to generated MEX-files (such as pwm driver separate from the 
S-Function Builder blocks that generated them. This avoids the possibility that 
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an end user could modify the behavior of this block and generate code 
unintentionally. 

Generated driver MEX-files should be stored in a directory on the MATLAB 
path along with your other target files.

Masking the Block
In this section you embed the pwm driver S-Function block in a masked 
subsystem. This is useful if simulation and/or code generation parameters 
parameters are to be added to the driver later:

1 Click on the pwm driver block. 

2 Select Create subsystem from the Edit menu in the model window. pwm 
driver is now encapsulated in a subsystem.

3 Right-click on the subsystem and select Mask subsystem from the context 
menu. The Mask Editor window opens.

4 In the Icon pane, add drawing commands.

disp('MYPWM')
port_label('input',1,'Duty cycle')   

5 Right-click on the subsystem and select Look under mask from the context 
menu. You now apply a mask to the underlying S-Function block.

6 Right-click on the S-Function block and select Mask S-function from the 
context menu. The Mask Editor window opens.

7 In the Mask Initialization pane, add the following code.

s = struct('port','PORTA');
set_param(gcb,'RTWData',s);

This code extracts mask data (the symbolic port name, PORTA) into a structure 
that is written into the RTWData structure of the model.rtw file during code 
generation. This data is then available for use by the TLC file that generates 
code for the driver block. (See the “Writing S-Functions for Real-Time 
Workshop” section in the Writing S-Functions documentation for further 
information on using RTWData.)
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Customizing Driver Code Generation
When the mypwm was built, the Generate wrapper TLC option was selected. In 
this section, you generate code using the TLC file (mypwm.tlc) generated by the 
S-Function Builder. You also examine the TLC file and the C code it produces, 
and make changes. To exercise the underlying TLC file and inspect code 
generation as it progresses, you create a test model test_mypwm. You then 
modify the TLC code to generate C code that would be appropriate to an actual 
hardware PWM driver:

1 Create a new model containing the PWM driver subsystem, with a Constant 
block and a terminator, as shown in the figure below. Set the Constant value 
to 50. In an actual PWM driver, this would generate a pulse signal with a 
duty cycle of 50%.

2 Save the model as test_mypwm.

3 On the Solver pane of the Configuration Parameters dialog, set Solver 
options to

- Type: Fixed-Step, discrete (no continuous states)

- Fixed-step size: 0.01 

4 On the Target Configuration section of the Real-Time Workshop pane of 
the Configuration Parameters dialog:

- Select the Real-Time Workshop Embedded Coder target (ert.tlc).

- Select the Generate code only option.

5 On the TLC debugging section of the Real-Time Workshop pane of the 
Configuration Parameters dialog, select the Retain .rtw file option.

6 Save the model.
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7 Click the Generate code button.

Real-Time Workshop generates C code for the model, as well as the .rtw file. 
You now examine information related to the mypwm device driver in the 
test_mypwm.rtw file.

8 The test_mypwm.rtw file is stored in the build directory. Open 
test_mypwm.rtw into the MATLAB editor.

9 Search for rtwdata. For the PWM driver S-Function block you find

Block {
      Type "S-Function"
      InMask yes
      MaskType ""
      BlockIdx  [0, 0, 1]
      ExprCommentInfo {

SysIdxList []
BlkIdxList []

      }
      ExprCommentSrcIdx {

SysIdx -1
BlkIdx -1

      }
      RTWdata {

port "PORTA"
      }
      Name "<S1>/pwm driver1"
      Identifier pwm_driver1
      TID 0
      RollRegions [0]
      NumDataInputPorts 1
      DataInputPort {

SignalSrc [C0]
DataTypeIdx 3
RollRegions [0]

      }

You can access the RTWdata information from the block as follows:

%assign someData =  %<Block.RTWdata.port>
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With this information, focus on the mypwm.tlc file that was generated by the 
S-Function Builder. The code excerpt below lists the entire file, except for 
comments.

%function BlockTypeSetup(block, system) Output
  %openfile externs
  extern void mypwm_Outputs_wrapper(const uint8_T *u0,
                          uint8_T *y0);
  %closefile externs
  %<LibCacheExtern(externs)>
  %%
%endfunction

%% Function: Outputs 
==========================================================
%%
%% Purpose:
%%      Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output
   /* S-Function "mypwm_wrapper" Block: %<Name> */

  %assign pu = LibBlockInputSignalAddr(0, "", "", 0)
  %assign py = LibBlockOutputSignalAddr(0, "", "", 0)
  %assign py_width = LibBlockOutputSignalWidth(0)
  %assign pu_width = LibBlockOutputSignalWidth(0)
  mypwm_Outputs_wrapper(%<pu>, %<py> );

  %%
%endfunction

%% [EOF] mypwm.tlc

For device drivers, this BlockTypeSetup section is inadequate. Replace the 
BlockTypeSetup section with the following BlockTypeSetup function, which 
contains a port address from the hypothetical target hardware.

%function BlockTypeSetup(block, system) Output
  %openfile defines
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   #ifndef _MYPWM_
     /* This is a dummy address that you will replace with a 
      * meaningful address or declaration suitable for your 
      * hardware.
      */
     # define %<block.RTWdata.port> 0x18h
   # define _MYPWM_

  %closefile defines
  %<LibCacheDefine(defines)>
  %%
%endfunction

Here you do not import an external C file here as the original “wrapper” style 
TLC code was doing. Instead, you introduce a #define relevant to our 
particular hardware. Of course, this is an optional statement and could be 
placed elsewhere. Another likely usage would be to modify the above code to 
include a header file that defines a number of registers or ports by a variety of 
PWM devices.

If you regenerate code using the modified mypwm.tlc, the following code is 
generated into the file test_mypwm_private.h.

#ifndef _MYPWM_
/* This is a dummy address that you will replace with a 
 * meaningful address or declaration suitable for your 
 * hardware
 */
# define PORTA 0x18h
# define _MYPWM_
#endif

Note that the generated TLC file does not include a Start section. You can add 
your own start section. 

%% Function: Start========================================
%function Start(block, system) Output
/* Here you would introduce any additional lines of
code needed to initialize this device for your hardware.
For example, you could initialize the period of the PWM
device, its initial output, polarity, and so on.
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One obvious illustration could be just setting the initial
duty to zero as shown below:
*/

%<block.RTWdata.port> = 0x00h;

%endfunction

Now, look at the Outputs section. The portion of this code generated by 
S-Function Builder is

%function Outputs(block, system) Output
   /* S-Function "mypwm_wrapper" Block: %<Name> */

  %assign pu = LibBlockInputSignalAddr(0, "", "", 0)
  %assign py = LibBlockOutputSignalAddr(0, "", "", 0)
  %assign py_width = LibBlockOutputSignalWidth(0)
  %assign pu_width = LibBlockOutputSignalWidth(0)
  mypwm_Outputs_wrapper(%<pu>, %<py> );

  %%
%endfunction

Rather than calling a function named mypwm_Outputs_wrapper, you want your 
driver code to directly in-line the code that implements our PWM driver. 
During the model outputs computation, this code only needs to translate the 
input signal u to the PWM duty cycle. In this case, change the TLC code to

%% Function: Outputs 
==========================================================
%%
%% Purpose:
%%      Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output
   /* S-Function PWM Block: %<Name> */

  %assign u = LibBlockInputSignal(0, "", "", 0)
  %<block.RTWdata.port> = %<u>;
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  %%
%endfunction

%% [EOF] mypwm.tlc

The resulting generated code is shown in the model step function of 
test_mypwm.c as follows.

/* Model step function */
void test_mypwm_step(void)
{

  /* S-Function PWM Block: <S1>/pwm driver1 */

  PORTA = test_mypwm_P.Constant_Value;

  /* (no update code required) */

}
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Device Drivers in Simulation
When designing device driver blocks, it is important to consider the role of your 
drivers in both simulation and code generation. This section discusses two 
approaches to the use of device drivers in simulation and code generation.

If you intend to use your drivers only in the code generation and deployment 
stages of your development process, you can use separate models for simulation 
and code generation. This multiple-model approach has a number of 
advantages. For reasons discussed in “Multiple-Model Approach” on 
page 10-41, this is the recommended approach.

If your driver blocks are used in simulation as well as in code generation, you 
may want to use a single-model approach, which may require that your driver 
blocks implement special behaviors (such as passing through their input 
signals) during simulation. This approach is discussed in “Single-Model 
Approach” on page 10-44.

Multiple-Model Approach
In many applications, it is possible to separate target-specific functions (for 
example, device drivers or signal conditioning) from the algorithm embodied by 
the model (for example, a controller). If the algorithmic part of the model can 
be encapsulated in a common subsystem, it becomes relatively simple to 
implement two separate models for simulation and code generation. Each 
model contains the common subsystem, but only the code generation model 
contains target-specific functions.

Consider a multiple-model approach to a plant/controller system, for example. 
One model performs a closed-loop simulation of a plant and controller. A second 
model, used for code generation only, includes the same controller and the I/O 
device drivers. Code generated from the second model allows the controller to 
be used in real time on a particular hardware target.

The models shown below illustrate this approach. These models were adapted 
from the Simulink/Stateflow Fault-Tolerant Fuel Control System demo. 
Figure 10-4 shows the simulation version of this model. The controller 
algorithm (Fuel Rate Controller subsystem) is implemented as a library block. 
Simulated inputs and outputs to and from the controller are entirely 
independent of any hardware target to which the model might eventually be 
deployed.
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Figure 10-4:  Multiple-Model Approach: Plant Model for Simulation

Figure 10-4 shows a separate version of the model that is specifically targeted 
for code generation for the Motorola MPC555. This model contains the same 
controller block, but the controller is connected to MPC555 I/O device drivers 
(Analog In and PWM Out). The model also contains blocks required for correct 
operation on the target hardware. These include data type conversion, scaling, 
and normalization blocks, and an MPC555 Resource Configuration block. 

Figure 10-5:  Multiple-Model Approach: Code Generation Model
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The drivers shown are supplied with the Embedded Target for the Motorola 
MPC555. Code generation could be retargeted to another processor relatively 
simply by replacing the driver blocks, for example with drivers from the 
Embedded Target for the Motorola HC12.

The multiple-model approach can become problematic if changes are 
introduced in one model without changing the other. In the example shown, 
this problem is minimized because the controller algorithm has been extracted 
into a library block that is used in both models. (An alternative would be to 
implement the controller as a separate model, and reference it with a Model 
block.) Also, the simulation and code generation models have been bundled into 
a project library, together with the common controller, as shown in Figure 10-4.

Figure 10-6:  Multiple-Model Approach: Project Library
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Advantages of the multiple-model approach include:

• There is no need to implement special simulation behaviors (such as use of 
simulation-only pass-through ports) in the device driver blocks. Real-world 
scaling and signal conditioning functions can be confined to the code 
generation model, and omitted from the simulation model.

• Conceptual clarity: Each model operates in a single mode (either simulation 
or code generation), but reuses components. The purpose of each model is 
clear to users. In addition, since device driver blocks are not instrumented 
with pass-through ports, their input/output functions are easier for users to 
understand.

• Any existing driver can be used without modification in the code generation 
model.

• Users are free to develop their plant and controller algorithms, without 
concern over hard-coded pass-through behavior of driver blocks.

• Increased flexibility for the end user: Code generation can be re-targeted to 
different processors by replacing the driver blocks.

• Optimal code generation: Avoids inefficiencies that can occur in code 
generation when using a single-model approach.

Single-Model Approach
The single-model approach employs the same model for simulation and for code 
generation. Traditional input simulation drivers generate a nominal value 
(usually 0), or simply do nothing. Traditional output simulation drivers act as 
sinks and can often be implemented as stubs.

If you need your drivers to play an active role in a closed-loop simulation, you 
can implement pass-through behavior in your simulation drivers. 
Pass-through is an option that lets you provide an output signal from your 
drivers during simulation. In the simplest case, a pass-through device driver 
block behaves like a “wire,” passing its input signal straight through to the 
output, without any processing. It is also possible to apply scaling or saturation 
or dynamics processing to the signal as it passes through the block.

Pass-through device drivers resemble traditional device drivers in that the 
driver behaves differently in simulation than it does when executed on target 
hardware. However, unlike a traditional simulation driver, a pass-through 
driver receives and outputs a signal that is significant during simulation.
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The following sections describe several approaches to implementation of 
pass-through behavior device drivers, including possible inefficiencies that 
may occur in generated code.

It is assumed that the device drivers discussed below are functioning within a 
subsystem (for example, a controller subsystem in a plant/controller model) 
and that subsystem code is generated with the right-click Build Subsystem... 
menu option.

Coding Pass-Through Behavior in mdlOutputs
A “traditional” approach implementing pass-through behavior in a simulation 
driver is to code the pass-through functionality directly into the mdlOutputs 
function of the driver S-function. This is the approach taken in the ADC_examp 
driver. See “mdlOutputs” on page 10-13 for a listing and discussion of the code.

Using the Environment Controller Block for Pass-Through
The Environment Controller block (included in the Simulink Signal Routing 
block library) provides a simple way to implement pass-through drivers. The 
Environment Controller has two inputs, labeled Sim and RTW, and a single 
output.

Figure 10-7:  Environment Controller Block

When a simulation is running, the Environment Controller block routes the 
Sim input signal to the output. During code generation, the block generates 
code that effectively routes the RTW input signal to the output.

You can implement a pass-through driver by creating a subsystem like that 
shown in Figure 10-8. The subsystem contains an S-function device driver 
block (for an input device such as an ADC), and an Environment Controller 
block that implements pass-through behavior. 
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Figure 10-8:  Subsystem Implements Pass-Through Logic with Environment
Controller

When the model containing this subsystem is in code generation state, the 
device driver block connected to the RTW input is active, and the path connecting 
the Sim input to the Environment Controller block output port is effectively 
dead. This path is removed from the generated code by the Real-Time 
Workshop dead-path elimination optimization.

When the model is in simulation state, the path from the RTW input is turned 
off. The path from the Sim input to the output becomes active. This bypasses 
the device driver block. In this case, the subsystem behaves as though it is a 
unity gain, passing signals through without change.

Disadvantages of the Environment Controller Block for Pass-Through. When using the 
Environment Controller block approach to pass-through, a number of 
inefficiencies can arise in generated code:

• A Switch block underlies the Environment Controller block. In code 
generation, it is desirable to optimize the Switch block (and any blocks on the 
unused Switch input) out of the code. This optimization requires that you 
turn on both the Block Reduction and Inline Parameters options. These 
options may not be suitable for your application (for example, if you require 
all parameters to be tunable).

• If the driver subsystem is built with the right-click Build Subsystem... menu 
option, storage for inputs and outputs to and from the subsystem is declared 
in the containing model’s external input (rtU) and output (rtY) structures.

For example, in the subsystem shown in Figure 10-8, storage would be 
allocated for the port labeled Simulation_Input.

• Output (rtY) assignments are generated in the model_step function.
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Using a Configurable Subsystem Block for Pass-Through
Another way to implement a pass-through feature is to use a Configurable 
Subsystem block that includes logic to select either a simulation or code 
generation version of a device driver.

To do this, a library is constructed, containing both versions of the driver and 
a master Configurable Subsystem block. The figure below shows a library 
containing two versions of an ADC driver block:

• The Simulation block has both an input and an output port; its mdlOutputs 
function simply copies the input to the output.

• The CodeGeneration block has only an output port.

The block labeled ADC is a Configurable Subsystem block that is configured to 
select either Simulation or CodeGeneration.

Rather than using the conventional manual selection method (the 
Configurable Subsystem’s Block Choice context menu), the ADC Configurable 
Subsystem block has mask initialization code that makes the selection 
automatically, depending on whether the model is in simulation or code 
generation mode. The mask initialization code is listed below.

path = rtwenvironmentmode(bdroot);
cssblk = gcb;
if path

disp('Taking simulation path')
set_param(cssblk,'BlockChoice','Simulation');

else
disp('Taking rtw path')
set_param(cssblk,'BlockChoice','CodeGeneration');

end
disp(get_param(cssblk,'BlockChoice'))
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The following block diagram shows a subsystem that includes both the ADC 
Configurable Subsystem block functioning as an input driver, and a similar 
Configurable Subsystem block (PWM) functioning as an output driver.

Disadvantages of the Configurable Subsystem Block for Pass-Through. When using the 
Configurable Subsystem block approach to pass-through, a number of 
inefficiencies can arise in generated code:

• If the driver subsystem is built with the right-click Build Subsystem... menu 
option, storage for inputs and outputs to and from the subsystem is declared 
in the model’s external input (rtU) and output (rtY) structures.

• Output (rtY) assignments are generated in the model_step function. These 
can be eliminated by turning on the Inline Parameters option, but inlining 
parameters may not be suitable for your application.
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