
Real-Time Workshop®

Embedded Coder
 For Use with Real-Time Workshop®

Version 4

Developing Embedded Targets

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder Developing Embedded Targets
© COPYRIGHT 2002-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time
Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 2002 Online only Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)

i

Contents

1
Introduction

Prerequisites and Related Documentation 1-2
What You Need to Know . 1-2
Related Documentation . 1-3
Embedded Target Implementations to Study 1-4

2
Overview of Embedded Target Development

Introduction . 2-2

Types of Targets . 2-3

Recommended Features for Embedded Targets 2-5

3
Target Development Mechanics

Components of a Custom Target . 3-2
Code Components . 3-3
Control Files . 3-5

Understanding and Using the Build Process 3-8
Build Process Phases and Information Passing 3-8
Build Process Flowchart . 3-9
Additional Information Passing Techniques 3-16

ii Contents

4
Target Directories, Paths, and Files

Introduction . 4-2

Directory and File Naming Conventions 4-3

Target Directory Structure and MATLAB Path 4-4
Adding Target Directories to the MATLAB Path 4-4
Location of Target Directories . 4-4

Target Directories and Files . 4-6
Target Root Directory (mytarget) . 4-6
Target Directory (mytarget/mytarget) . 4-6
Target Block Directory (mytarget/blocks) 4-6
Development Tools Directory (mytarget/dev_tool1,
mytarget/dev_tool2) . 4-8
Target Preferences Directory (mytarget/mytarget/@mytarget) . 4-9
Target Source Code Directory (mytarget/src) 4-9

Files in the Target Directory . 4-10

Additional Directories and Files
for Externally Developed Targets . 4-17

5
System Target Files

Introduction . 5-2

System Target File Naming and Location Conventions . . . 5-3

System Target File Structure . 5-4
Header Comments . 5-5
TLC Configuration Variables . 5-7
TLC Program Entry Point
and Related %includes . 5-8

iii

RTW_OPTIONS Section . 5-9
rtwgensettings Structure . 5-16
Additional Code Generation Options . 5-18
Model Reference Considerations . 5-18

Defining and Displaying Custom Target Options 5-19

Tips and Techniques for Customizing Your STF 5-28
Required and Recommended %includes 5-28
Inherited Target Options . 5-32
Supporting Multiple Development Environments 5-33

Tutorial: Creating a Custom Target Configuration 5-35
my_ert_target Overview . 5-35
Creating Target Directories . 5-37
Create ERT-Based STF . 5-38
Create ERT-Based TMF . 5-43
Create Test Model and S-Function . 5-44
Verify Target Operation . 5-46

6
Template Makefiles

Template Makefiles and Tokens . 6-2
Template Makefile Tokens . 6-2

The make Command . 6-6

Structure of the Template Makefile . 6-7

Customizing and Creating Template Makefiles 6-10
Setting Up a Template Makefile . 6-10
Using Macros and Pattern Matching Expressions
in a Template Makefile . 6-12
Using rtwmakecfg Files to Customize the Makefile 6-13
Supporting Continuous Time in Custom Targets 6-16
Model Reference Considerations . 6-17

iv Contents

Generating Make Commands for Nondefault
Compilers . 6-17

7
Supporting Model Referencing

Overview . 7-2

System Target File Modifications . 7-3

Template Makefile Modifications . 7-4

Hook File Modifications . 7-7

Supporting the Shared Utilities Directory in the
Build Process . 7-8

8
Using Target Preferences

Introduction to Target Preferences . 8-2
Target Preferences Classes, Objects, and Properties 8-2

Creating Your Target Preferences Class 8-4

Target Preferences Class Methods . 8-9

Making Target Preferences Available to the End User . . . 8-11

Using Target Preferences in the Build Process 8-13
Accessing Target Preference Data from MATLAB 8-13
Accessing Target Preference Data from TLC 8-13

v

9
Interfacing to Development Tools

Introduction . 9-2

The Makefile Approach . 9-3

Interfacing to an Integrated Development Environment . . 9-4
Generating a CPP_REQ_DEFINES Header File 9-4
Interfacing to the CodeWarrior IDE . 9-5

10

Developing Device Drivers for
Embedded Targets

Introduction . 10-2
Related Documentation . 10-2
Tradeoffs in Device Driver Development 10-3
An Example Device Driver . 10-4

Writing a Device Driver C-MEX S-Function 10-6

Creating a User Interface for Your Driver 10-16

Building the MEX-File and the Driver Block 10-22

Inlining the S-Function Device Driver 10-23
Code Components . 10-23
Inlined Device Driver Operations . 10-24
Inlining the Example ADC Driver . 10-24

Creating Device Drivers with the S-Function Builder . . 10-30
Example Device Driver Specification 10-31
Building the MEX-File . 10-31
Binding the MEX-File to an S-Function Block 10-33
Masking the Block . 10-34
Customizing Driver Code Generation 10-35

vi Contents

Device Drivers in Simulation . 10-41
Multiple-Model Approach . 10-41
Single-Model Approach . 10-44

Index

1

Introduction

Prerequisites and Related
Documentation (p. 1-2)

Read this for important information on the Release 14
specific technologies and features described in this
document.

Prerequisites and Related
Documentation (p. 1-2)

Scope and purpose of this document; what you need to
know before using this document; related documentation
and example targets that will supplement what you learn
from this document.

1 Introduction

1-2

Prerequisites and Related Documentation
The purpose of this document is to guide you in the development of a custom
embedded target for use with Real-Time Workshop Embedded Coder. This
document identifies requirements, implementation tasks, and implementation
details for target creation.

Custom target creation is a topic for advanced users of Real-Time Workshop®
and Real-Time Workshop Embedded Coder. “What You Need to Know” on
page 1-2 summarizes the prerequisite experience level assumed for readers of
this document.

This document supplements information contained in other documentation
provided for Real-Time Workshop and Real-Time Workshop Embedded Coder.
See “Prerequisites and Related Documentation” on page 1-2 for sources of
additional information related to embedded target development.

What You Need to Know
This document assumes you are experienced with MATLAB®, Simulink®,
Real-Time Workshop, and the Real-Time Workshop Embedded Coder.

This document assumes that you will be developing a target based on the
Embedded Real-Time (ERT) target that is included in the Real-Time Workshop
Embedded Coder version 4.0. The target features and technologies described in
this document are subject to change in future releases of the Real-Time
Workshop Embedded Coder.

You should be familiar with the following products and their documentation
before reading this document:

• MATLAB and M-file programming

• Simulink

• Real-Time Workshop and its code generation and build process

• Real-Time Workshop Embedded Coder

• The Real-Time Workshop Target Language Compiler (TLC)

• Familiarity with Stateflow® may be helpful, but is not required.

Prerequisites and Related Documentation

1-3

Related Documentation
• Real-Time Workshop Embedded Coder documentation: You should be

thoroughly familiar with this detailed documentation of Real-Time
Workshop Embedded Coder and the ERT target. Important topics covered
include ERT model execution, timing, and task management; how to
interface to and call model code; and default ERT code generation options.

• Real-Time Workshop Getting Started documentation: General introduction
to the Real-Time Workshop. The sections “Basic Real-Time Workshop
Concepts” and “Building an Application” include high-level overview
information of essential target files and the build process.

• Real-Time Workshop documentation: This detailed documentation of the
Real-Time Workshop covers several topics of interest to some target
developers:

- Inlining and code generation issues relevant to device drivers and other
S-functions

- Interfacing signals and parameters within generated code to your own
code

- Combining code generated from multiple models into a single system

- Implementing external mode communication via your own low-level
protocol layer

• Target Language Compiler Reference Guide documentation: A working
knowledge of TLC is needed if you intend to make nontrivial modifications to
your system target file, use TLC hooks into the build process, utilize
information from the model.rtw file, implement inlined device drivers, or
pass information into or out of the TLC phase of the build process.
Minimally, you should work through the introductory sections, including “A
TLC Tutorial.”

• Writing S-Functions documentation: Familiarity with writing fully inlined
S-functions is required if you intend to develop device driver blocks for your
target. “Building S-Functions Automatically” documents the S-Function
Builder.

1 Introduction

1-4

Embedded Target Implementations to Study
You should also consider getting familiar with the documentation for the
following targets. If you do not have a license for a product of interest, you can
gain access to the documentation from the MathWorks Web site.

• Embedded Target for TI C6000TM DSP

• Embedded Target for Motorola® MPC555

• Embedded Target for OSEK/VDX®

• Embedded Target for Infineon C166® Microcontrollers

• Embedded Target for Motorola® HC12

• Embedded Target for TI C2000TM DSP

2
Overview of Embedded
Target Development

Introduction (p. 2-2) Motivation for developing a custom embedded target.

Types of Targets (p. 2-3) Summary of target types that are appropriate for various
use cases.

Recommended Features for Embedded
Targets (p. 2-5)

Required and recommended functionality for custom
embedded targets.

2 Overview of Embedded Target Development

2-2

Introduction
The targets bundled with Real-Time Workshop are suitable for many different
applications and development environments. Third-party targets provide
additional versatility. However, you might want to implement a custom target
for any of the following reasons:

• To enable end users to generate executable production code for a specific
CPU or development board, using a specific development environment
(compiler/linker/debugger).

• To support I/O devices on the target hardware by incorporating custom
device driver blocks into your models.

• To configure the build process for a special compiler (such as a cross-compiler
for an embedded microcontroller or DSP board) or development/debugging
environment.

The Real-Time Workshop Embedded Coder provides a point of departure for
the creation of custom embedded targets, for the basic purposes above. This
manual covers the tasks and techniques you need to implement a custom
embedded target.

Types of Targets

2-3

Types of Targets
Before considering the specific components, features, and capabilities that
should be included in an embedded target, let’s consider several types of
targets intended for different use cases.

The target types discussed below are not mutually exclusive. A given embedded
target can support more than one of these use cases, or additional uses not
outlined here. Also, there is a progression of capabilities from the first
(baseline) to second (turnkey production) target types; you may want to
implement an initial baseline target and a following, more full-featured
turnkey version of a target.

The discussion of target types is followed by “Recommended Features for
Embedded Targets” on page 2-5, which contains a suggested list of target
features and general guidelines for embedded target development.

Baseline Targets
A baseline target offers a starting point for targeting a production processor. A
baseline target integrates Real-Time Workshop Embedded Coder with one or
more popular cross-development environments (compiler/linker/debugger tool
chains). A baseline target provides a starting point from which you can
customize the target for application needs.

Target files provided for this type of target should be readable, easy to
understand, and fully commented and documented. Specific attention should
be paid to the interface to the intended cross-development environment. This
interface should be implemented using the preferred approach for that
particular development system. For example, some development environments
use traditional make utilities, while others are based on project-file builds that
can be automated under control of Real-Time Workshop.

When you use a baseline target, you need to include your own device driver and
legacy code and modify linker memory maps to suit your needs. You should be
familiar with the targeted development system.

Turnkey Production Targets
A turnkey production target also targets a production processor, but includes
the capability to create target executables that interact immediately with the
external world. In general, ease of use is more important than simplicity or

2 Overview of Embedded Target Development

2-4

readability of the target files, because it is assumed that you do not want or
need to modify these files.

Desirable features for a turnkey production target include

• Significant I/O driver support provided out of the box

• Easy downloading of generated standalone executables with third-party
debuggers

• User-controlled placement of an executable in FLASH or RAM memory

• Support for target visibility and tuning

HIL Simulation Targets
A specialized use case is the generation of executables intended for use in
Hardware-In-the-Loop (HIL) simulations. In a HIL simulation, parts of a pure
simulation are gradually replaced with hardware components as components
are refined and fabricated. HIL simulation offers an efficient design process
that eliminates costly interations of part fabrication.

PIL Cosimulation Targets
Another specialized use case is the generation of executables intended for use
in Processor-In-the-Loop (PIL) cosimulation. In a PIL cosimulation, a
subsystem runs on target hardware, but within the context of a Simulink
simulation. Cosimulation can be useful for validation of generated code and in
validating the target compiler/processor environment at the subsystem unit
level.

Recommended Features for Embedded Targets

2-5

Recommended Features for Embedded Targets
This section gives a suggested list of target features and general guidelines for
embedded target development.

Basic Target Features

• Targets should be based on the Embedded Real-Time (ERT) target that is
included in the Real-Time Workshop Embedded Coder. The features
documented in this guide are available in Real-Time Workshop Embedded
Coder Version 4.0.

Since your target is based on the ERT target, it should use that target’s
Embedded-C code format, and should inherit the options defined in the ERT
target’s system target file. By following these recommendations, you ensure
that your target has all the production code generation capabilities of the
ERT target.

See Chapter 5, “System Target Files” for further details on the inheritance
mechanism, setting the code format, and other details.

• The most fundamental requirement for an embedded target is that it
generate a real-time executable from a model or subsystem. Typically, an
embedded target generates a timer interrupt-based, bare-board executable
(although targets can be developed for an operating system environment as
well).

Your target should support the Real-Time Workshop concepts of
singletasking and multitasking solver modes for model execution. Tasking
support comes almost “for free” with the ERT target, but you should
thoroughly understand how it works before implementing an ERT-based
target.

Implementation of timer interrupt-based execution is documented in “Data
Structures and Program Execution” of the Real-Time Workshop Embedded
Coder documentation.

• You should generate the target executable’s main program module, rather
than using a static main module (such as the static ert_main.c module
provided with Real-Time Workshop Embedded Coder). A generated main.c

2 Overview of Embedded Target Development

2-6

can be made much more readable and more efficient, since it omits
preprocessor checks and other extra code.

See the Real-Time Workshop Embedded Coder documentation. for
information on generated and static main program modules.

• You should use the target preferences mechanism (see Chapter 8, “Using
Target Preferences”) to store and configure information about the
development environment a user selects and other persistent data associated
with your target.

• Follow the guidelines in Chapter 4, “Target Directories, Paths, and Files” to
set up a file and directory structure that is consistent with other targets.
Consistency between different targets is important and reduces the effort
required to create and understand a target.

Integration with Target Development Environments

• Most cross-development systems run under a Windows PC host. Your target
should support Windows NT, 2000 or XP as the host environment.

Some cross-development systems support one or more versions of UNIX,
allowing for UNIX host support as well.

• Your embedded target must support at least one embedded development
environment. The interface to a development environment can take one of
several forms. The most common approach is to use a template makefile to
generate standard makefiles with the make utility provided with your
development environment. Chapter 6, “Template Makefiles” describes the
structure of template makefiles.

Another approach with IDE-based tools is project file creation and/or
Windows Component Object Model (COM) automation.

It is important to consider the license requirements and restrictions of the
development environment vendor. You may need to modify files provided by
the vendor and ship them as part of the embedded target.

See Chapter 9, “Interfacing to Development Tools” for further information.

Recommended Features for Embedded Targets

2-7

Observing Execution of Target Code

• Your target should support a mechanism you can use to observe the target
code as it runs in real time (outside of a debugger).

One industry-standard approach is to use the CAN bus, with an ASAP2 file
and CAN Calibration Protocol (CCP). There are several host-based graphical
front-end tools available that connect to a CCP-enabled target and provide
data viewing and parameter tuning. Supporting these tools requires
implementation of CAN hardware drivers and CCP protocol for the target,
as well as ASAP2 file generation. Your target can leverage the ASAP2
support provided by Real-Time Workshop Embedded Coder.

Another option is to support Simulink External Mode over a serial interface
(RS-232). See the Real-Time Workshop documentation for information on
using the external mode API.

Deployment and Hardware Issues

• Device driver support is an important issue in the design of an embedded
target. Device drivers are Simulink blocks that support either hardware I/O
capabilities of the target CPU, or I/O features of the development board.

If you are developing a baseline target, consider providing minimal driver
support, on the assumption that end users develop their own drivers. If you
are developing a turnkey production target, you should provide full driver
support. See Chapter 10, “Developing Device Drivers for Embedded Targets”
for a detailed discussion of device drivers.

• Automatic download of generated code to the target hardware makes a
target easier to use. Typically a debugger utility is used; if the chosen
debugger supports command script files, this can be straightforward to
implement. “STF_make_rtw_hook.m” on page 4-12 describes a mechanism
to execute M-code from the build process. You can use this mechanism to
make system() calls to invoke utilities such as a debugger. You can invoke
other simple downloading utilities in a similar fashion.

If your development system supports COM automation, you can control the
download process by that mechanism. Using COM automation is discussed
in Chapter 9, “Interfacing to Development Tools.”

• Executables that are mapped to RAM memory are typical. You can provide
optional support for FLASH or RAM placement of the executable by using

2 Overview of Embedded Target Development

2-8

your target’s code generation options. To support this capability, you might
need multiple linker command files, multiple debugger scripts, and possibly
multiple makefiles or project files. The ability to automatically switch
between these files, depending on the RAM/FLASH option value, is also
needed.

• Select a popular, widely available evaluation or prototype board for your
target processor. Consider enclosed and ruggedized versions of the target
board. Also consider board level support for the various on-chip I/O
capabilities of the target CPU, and the availability of development systems
that support the selected board.

3
Target Development
Mechanics

Components of a Custom Target
(p. 3-2)

Summary of the code components and control files that
make up a custom target.

Understanding and Using the Build
Process (p. 3-8)

Detailed flowchart of the build process of the Real-Time
Workshop Embedded Coder, with emphasis on available
customization hooks and on passing information between
different phases of the process.

3 Target Development Mechanics

3-2

Components of a Custom Target
The components of a custom target are files located in a hierarchy of
directories. The top-level directory in this structure is called the target root
directory. The target root directory and its contents are named, organized, and
located on the MATLAB path according to conventions described in Chapter 4,
“Target Directories, Paths, and Files.”

The components of a custom target include

• Code components: C source code that supervises and supports execution of
generated model code.

• Control files:

- A system target file (STF) to control the code generation process.

- File(s) to control the building of an executable from the generated code. In
a traditional make-based environment, a template makefile (TMF)
generates a makefile for this purpose. Another approach is to generate
project files in support of a modern integrated development environment
(IDE) such as Metrowerks CodeWarrior.

- Hook files: Optional TLC and M-files that can be invoked at well-defined
stages of the build process. Hook files let you customize the build process
and communicate information between various phases of the process.

• Target preferences files: These files define a target preferences class
associated with your target. Your target preference class lets you create data
objects that define and store properties associated with your target. For
example, you may want to store a user-defined path to a cross-compiler that
is invoked by the build process. The target preferences mechanism is
described in Chapter 8, “Using Target Preferences”.

• Other target files: Files that let you integrate your target into the MATLAB
environment. For example, you can provide an info.xml file to make your
target block libraries, demos, and target preferences available from the
MATLAB Start menu.

The next sections introduce key concepts and terminology you need to know to
develop each component. References to more detailed information sources are
provided.

Components of a Custom Target

3-3

Code Components
A Real-Time Workshop program containing code generated from a Simulink
model consists of a number of code modules and data structures. These fall into
two categories.

Application Components
Application components are those which are specific to a particular model; they
implement the functions represented by the blocks in the model. Application
components are not specific to the target. Application components include

• Modules generated from the model

• User-written blocks (S-functions)

• Parameters of the model that are visible, and can be interfaced to, external
code

Run-Time Interface Components
A number of code modules and data structures, referred to collectively as the
run-time interface, are responsible for managing and supporting the execution
of the generated program. The run-time interface modules are not
automatically generated. Depending on the requirements of your target, you
must implement certain parts of the run-time interface. Table 3-1 summarizes
the run-time interface components.

Table 3-1: Run-Time Interface Components

You Provide... Real-Time Workshop Provides...

Customized main program Generic main program

Timer interrupt handler to
run model

Execution engine and integration
solver (called by timer interrupt
handler)

Other interrupt handlers Example interrupt handlers
(Asynchronous Interrupt blocks)

3 Target Development Mechanics

3-4

User-Written Run-Time Interface Code
Most of the run-time interface is provided by Real-Time Workshop. Depending
on the requirements of your target, you must implement some or all of the
following elements:

• A timer interrupt service routine (ISR). The timer runs at the program’s base
sample rate. The timer ISR is responsible for operations that must be
completed within a single clock period, such as computing the current output
sample. The timer ISR usually calls the Real-Time Workshop-supplied
function, rt_OneStep.

If you are targeting a real-time operating system (RTOS), your generated
code usually executes under control of the timing and task management
mechanisms provided by the RTOS. In this case, you may not have to
implement a timer ISR.

• The main program. Your main program initializes the blocks in the model,
installs the timer ISR, and executes a background task or loop. The timer
periodically interrupts the main loop. If the main program is designed to run
for a finite amount of time, it is also responsible for cleanup operations - such
as memory deallocation and masking the timer interrupt - before
terminating the program.

If you are targeting a real-time operating system (RTOS), your main
program most likely spawns tasks (corresponding to the sample rates used
in the model) whose execution is timed and controlled by the RTOS.

Your main program typically is based on the Real-Time Workshop
Embedded Coder main program, ert_main.c. The Real-Time Workshop
Embedded Coder documentation details the structure of the Real-Time
Workshop Embedded Coder run-time interface and the execution of
Real-Time Workshop Embedded Coder code, and provides guidelines for
customizing ert_main.c.

Device drivers Example device drivers

Data logging, parameter
tuning, signal monitoring,
and external mode support

Data logging, parameter tuning,
signal monitoring, and external mode
APIs

Table 3-1: Run-Time Interface Components (Continued)

You Provide... Real-Time Workshop Provides...

Components of a Custom Target

3-5

• Device drivers. Drivers communicate with I/O devices on your target
hardware. In production code, device drivers are normally implemented as
inlined S-functions.

• Other interrupt handlers. If your models need to support asynchronous
events, such as hardware generated interrupts and asynchronous read and
write operations, you must supply interrupt handlers. The Real-Time
Workshop Interrupt Templates library provides examples.

• Data logging, parameter tuning, signal monitoring, and external mode
support. It is atypical to implement rapid prototyping features such as
external mode support in an embedded target. However, it is possible to
support these features by using standard APIs provided by the Real-Time
Workshop. See the Real-Time Workshop documentation for details.

Control Files
The code generation and build process is directed by a number of TLC and
M-files collectively called control files. This section introduces and summarizes
the main control files.

Top-Level Control File (make_rtw)
The build process is initiated when you click Build (or type Ctrl+B). At this
point, Real-Time Workshop parses the Make command field of the Real-Time
Workshop target configuration pane, expecting to find the name of a top-level
M-file command that controls the build process (as well as optional arguments
to that command). The default top-level control file for the build process is
make_rtw.m.

Normally, target developers do not need detailed knowledge of how make_rtw
works. (The details that are necessary to target developers are described in
“Understanding and Using the Build Process” on page 3–8.) You should not
customize make_rtw.m. The make_rtw.m file contains all the logic required to
execute your target-specific control files, including a number of hook points for
execution of your custom code.

make_rtw does the following:

• Passes optional arguments in to the build process

• Performs any required preprocessing before code generation

3 Target Development Mechanics

3-6

• Executes the STF to perform code generation (and optional HTML report
generation)

• Processes the TMF to generate a makefile

• Invokes a make utility to execute the makefile and build an executable

• Performs any required post-processing (such as generating calibration data
files or downloading the generated executable to the target)

System Target File (STF)
The Target Language Compiler (TLC) generates target-specific C code from an
intermediate description of your Simulink block diagram (model.rtw). The
Target Language Compiler reads model.rtw and executes a program
consisting of several target files (.tlc files.) The STF, at the top level of this
program, controls the code generation process. The output of this process is a
number of source files, which are fed to your development system’s make
utility.

You need to create a customized STF to set code generation parameters for
your target. You should copy, rename, and modify the standard ERT system
target file (matlabroot/rtw/c/ert/ert.tlc).

The detailed structure of the STF is described in Chapter 5, “System Target
Files.”

Template Makefile (TMF)
A TMF provides information about your model and your development system.
Real-Time Workshop uses this information to create an appropriate makefile
(.mk file) to build an executable program.

Some targets implement more than one TMF, in order to support multiple
development environments (for example, two or more cross-compilers) or
multiple modes of code generation (for example, generating a binary executable
vs. generating a project file for your compiler).

The Real-Time Workshop Embedded Coder provides a large number of TMFs
suitable for different types of host-based development systems. These TMFs
are located in matlabroot/rtw/c/ert. The standard TMFs are described in the
“Template Makefiles and Make Options” section of the Real-Time Workshop
documentation.

Components of a Custom Target

3-7

The detailed structure of the TMF is described in Chapter 6, “Template
Makefiles.”

Hook Files
The Real-Time Workshop build process allows you to supply optional hook files
that are executed at specified points in the code generation and make process.
You can use hook files to add target-specific actions to the build process.

To ensure that hook files are called correctly by the build process, they must
follow well-defined naming and location requirements. Chapter 4, “Target
Directories, Paths, and Files” describes these requirements.

3 Target Development Mechanics

3-8

Understanding and Using the Build Process
To develop an embedded target, you need a thorough understanding of the
Real-Time Workshop build process. Your embedded target uses the build
process and may require you to modify or customize the process. A general
overview of the build process is given in the Real-Time Workshop Getting
Started documentation in the “Building an Application” section.

This section supplements that overview with a detailed flowchart of the build
process as implemented by the Real-Time Workshop Embedded Coder. The
emphasis is on points in the process where customization hooks are available
and on passing information between different phases of the process.

This section concludes with “Additional Information Passing Techniques” on
page 3-16, describing assorted tips and tricks for passing information during
the build process.

Build Process Phases and Information Passing
It is important to understand where (and when) the build process obtains
required information. Sources of information include

• The model.rtw file, which provides information about the generating model.
All information in model.rtw is available to target TLC files.

• The Real-Time Workshop related panes of the Configuration Parameters
dialog. Options (both general and target-specific) are provided through check
boxes, menus, and edit fields. You can associate options with TLC variables
and makefile tokens in the rtwoptions data structure.

• The target preferences data. Target preferences provide persistent
information about the target, such as the location of your development tools.

• The TMF, which generates the model-specific makefile.

• Environment variables on the host computer. Environment variables
provide additional information about installed development tools.

• Other target-specific files such as target-related TLC files, linker command
files, or project files.

It is also important to understand the several phases of the build process and
how to pass information between the phases. The build process comprises
several high-level phases:

Understanding and Using the Build Process

3-9

• Execution of the top-level M-file (make_rtw.m) to sequence through the build
process for a target

• Conversion of the model into the TLC input file (model.rtw)

• Generation of the target code by the TLC compiler

• Compilation of the generated code with make or other utilities

• Transmission of the final generated executable to the target hardware with
a debugger or download utility

It is helpful to think of each phase of the process as a different “environment”
that maintains its own data. These environments include

• M-code execution environment (MATLAB)

• Simulink

• Target Language Compiler execution environment

• makefile

• Development environments such as and IDE or debugger

In each environment, information may be needed from the various sources
mentioned above. For example, during the TLC phase, it may be necessary to
execute an M-file to obtain information from the MATLAB environment. Also,
a given phase may generate information that is needed in a subsequent phase.

Build Process Flowchart
The following flowcharts detail the build process as a sequence of actions that
execute within several environments:

• Figure 3-1 on page 3-13 depicts the initial M-code execution phase.

• Figure 3-2 on page 3-13 depicts the Simulink model compilation phase and
M-code execution following it.

• Figure 3-3 on page 3-14 depicts the main TLC code generation phase and
M-code execution following it.

• Figure 3-4 on page 3-15 depicts the final M-code, model.bat, and make
phase.

In the flowcharts, bold rectangles and oval balloons indicate points where
different environments can interact by using hooks or other mechanisms for

3 Target Development Mechanics

3-10

information passing. See “Files in the Target Directory” on page 4-10 for
details on the available M-file and TLC hooks, with code examples.

Understanding and Using the Build Process

3-11

3 Target Development Mechanics

3-12

make_rtw (buildArgs)

Invoked with Ctrl+B, Build
button/menu, or rtwbuild('model')

Hook for target-specific M-code

Get STF name from Real-Time
Workshop GUI

Call STF_make_rtw_hook
('entry',modelName,[],[],[],buildArgs)
if it exists. Otherwise, display “Starting RTW
Build Procedure...” message.

Get user-selected options from Real-Time Workshop GUI

MATLAB Command Window brought forward

Call Stateflow to generate chart and
machine code under sfprj directory (as
*.tlc and *.tlh)

Call STF_make_rtw_hook
('before_tlc',modelName,[],[],[],buildArg
s) if it exists.

Hook for target-specific M-code

Continue to Simulink Environment
flowchart (Figure 3-2)

Get TMF name or run specified M-file to get TMF name Hook for target-specific M-code to
select TMF

Understanding and Using the Build Process

3-13

Figure 3-1: MATLAB Environment for Build Process

Figure 3-2: Simulink and M-Code Environment for Build Process

Target-specific model based actions can be introduced.
Call into Simulink to generate model.rtw
file. Model compilation triggers block mask
and parameter evaluation.

Delete *.c and *.h files in build directory.

Invoke Target Language Compiler with STF,
model.rtw and rtwOptions as command line
arguments.

Continue to TLC Environment
flowchart 1 (Figure 3-3)

3 Target Development Mechanics

3-14

Figure 3-3: TLC and M-Code Environment Flowchart

Target-specific TLC code can be introduced.
mytarget_settings.tlc mechanism allows
setting up additional TLC variables and
information.

%include "codegenentry.tlc" directive in
STF initiates code generation.

CodeTemplate mechanism in STF can replace
backend main.c code generation.

Target-specific main program module can be generated.

Optional HTML report generation

Run c_indent utility on generated .c, .h files

Create MODULES list to include *.c files from
build directory

Finish HTML report generation (if selected)
by procession generated .c, .h files into
HTML

Continue to M-Code Environment flowchart (Figure 3-4)

mytarget_genfiles.tlc mechanism allows
generation of additional files for debuggers,
and so on. mytarget_genfiles.tlc
mechanism also allows export of
TLC-generated information into MATLAB for
later M-code processing with FEVAL.

Target-specific files can be generated and
information can be exported to MATLAB.

Understanding and Using the Build Process

3-15

Figure 3-4: M-Code, model.bat, and Makefile Environment Flowchart

Read TMF file, process |>name<| tokens

 If Generate Code Only selected, skip to exit hook.

Set success indicator to BUILD_SUCCESS if defined in
TMF; if not defined, use default ('### Created')

Invoke model.bat file. Check STDOUT for
success string when control returns.

Hook for target-specific M-code
Call STF_make_rtw_hook
('before_make',modelName,[matlabroot,'\rtw',
templateMakeFile,buildOpts,buildArgs) if it exists.

M-code hook generates target-specific
model.bat.

Call STF_wrap_make_cmd.m if it exists. Otherwise use
MAKECMD line in TMF to select default compiler and
generate default model.bat.

Target-specific build success string

M-code hook to invoke downloads or
other target-specific utilities

Call STF_make_rtw_hook
('exit',modelName,[matlabroot,'\rtw',
templateMakeFile,buildOpts,buildArgs) if it exists

makevariables expanded (see “makevariable Field in
rtwoptions Structure”)

 Read all rtwmakecfg.m files, expand
includes, libs, rules and generate model.mk

Block-specific build support with the rtwmakecfg function
(See “Using rtwmakecfg Files to Customize the Makefile”)

3 Target Development Mechanics

3-16

Additional Information Passing Techniques
This section describes a number of useful techniques for passing information
among different phases of the build process.

tlcvariable Field in rtwoptions Structure
Options on the Real-Time Workshop related panes of the Configuration
Parameters dialog can be associated with a TLC variable, and specified in the
tlcvariable field of the option’s entry in the rtwoptions structure. The
variable value is passed on the command line when TLC is invoked. This
provides another way to make Real-Time Workshop options and their values
available in the TLC phase.

See “System Target File Structure” on page 5-4 for further information.

makevariable Field in rtwoptions Structure
Similarly, Real-Time Workshop options can be associated with a template
makefile token, specified in the makevariable field of the option’s entry in the
rtwoptions structure. If a token of the same name as the makevariable name
exists in the TMF, the token is updated with the option value when the final
makefile is created. If the token does not exist in the TMF, the makevariable
is passed in on the command line when make is invoked. Thus, in either case,
the makevariable is available to the makefile.

See “System Target File Structure” on page 5-4 for further information.

Accessing Host Environment Variables
You can access host shell environment variables from MATLAB by entering the
getenv command. For example:

getenv ('MSDEVDIR')

ans =

D:\Applications\Microsoft Visual Studio\Common\MSDev98

To access the same information from TLC, use the FEVAL directive to invoke
getenv.

%assign eVar = FEVAL("getenv", "<varname>").

Understanding and Using the Build Process

3-17

Supplying Development Environment Information
to Your Template Makefile
An embedded target must tie the build process to target-specific development
tools installed on a host computer. For the make process to run these tools
correctly, the TMF must be able to determine the name of the tools, the path to
the compiler, linker, and other utilities, and possibly the host operating system
environment variable settings. This section describes two techniques for
supplying this information.

The simpler, more traditional approach is to require the end user to modify the
target TMF. The user enters path information (such as the location of a
compiler executable), and possibly host operating system environment
variables, as make variables. This allows the TMF to be tailored to specific
needs.

This approach is not satisfactory in an environment where MATLAB is
installed on a network and multiple users share read-only TMFs. Another
possible drawback to this approach is that the tool information is only available
during the makefile processing phase of the build process.

A second approach is to use the target preferences feature (see Chapter 8,
“Using Target Preferences”) together with the wrap_make_cmd_hook
mechanism (see “The _wrap_make_cmd_hook Mechanism” on page 4-13). In
this approach, compiler and other tool path information is stored as
preferences data, which is obtained by the STF_wrap_make_cmd_hook.m file.
This allows tool path information to be saved separately for each user.

Another advantage to the second approach is that target preferences data is
available to all phases of the build process, including the TLC phase. This
information may be required to support features such as RAM/ROM profiling.

Using MATLAB Application Data
Application data provides a way for applications to save and retrieve data
stored with the GUI. This technique enables you to create what is essentially
a user-defined property for an object, and use this property to store data for use
in the build process. If you are unfamiliar with this technique, see the
“Application Data” section of the MATLAB documentation.

The following code examples illustrates the use of application data to pass
information to TLC.

3 Target Development Mechanics

3-18

This M-file, tlc2appdata.m, stores the data passed in as application data
under the name passed in (appDataName).

function k = tlc2appdata(appDataName, data)
disp([mfilename,': ',appDataName,' ', data]);
setappdata(0,appDataName,data);
k = 0; % TLC expects a return value for FEVAL.

The following sample TLC file uses the FEVAL directive to invoke
tlc2appdata.m to store arbitrary application data, under the name z80.

%% test.tlc
%%
%assign myApp = "z80"
%assign myData = "314159"
%assign dummy = FEVAL("tlc2appdata",myApp,myData)

To test this technique:

1 Create the tlc2appdata.m M-file as shown. Make sure that tlc2appdata.m
is stored in a directory on the MATLAB path.

2 Create the TLC file as shown. Save it as test.tlc.

3 Enter the following command at the MATLAB prompt to execute the TLC
file:

tlc test.tlc

4 Get the application data at the MATLAB prompt:

k = getappdata(0,'z80')

MATLAB returns the value 314159.

5 Enter the following command.

who

Note that application data is not stored in the MATLAB workspace. Also
observe that the z80 data is not visible. Using application data in this way
has the advantage that it does not corrupt the MATLAB workspace. Also, it
helps prevent you from accidently deleting your data, since it is not stored
directly in the your workspace.

Understanding and Using the Build Process

3-19

A real-world use of application data might be to collect information from the
model.rtw file and store it for use later in the build process.

Adding Block-Specific Information to the Makefile
The rtwmakecfg mechanism provides a method for inlined S-functions such as
driver blocks to add information to the makefile. This mechanism is described
in “Using rtwmakecfg Files to Customize the Makefile” on page 6-13.

3 Target Development Mechanics

3-20

4
Target Directories, Paths,
and Files

Introduction (p. 4-2) Motivation and overview of this section.

Directory and File Naming
Conventions (p. 4-3)

Requirements and recommendations for naming your
target directories and files.

Target Directory Structure and
MATLAB Path (p. 4-4)

Structure and location of target directories.

Target Directories and Files (p. 4-6) Content and usage of target directories and files.

Files in the Target Directory (p. 4-10) Detailed coverage of key target files, including
customization hooks.

Additional Directories and Files for
Externally Developed Targets (p. 4-17)

Information for external (not MathWorks) target
developers

4 Target Directories, Paths, and Files

4-2

Introduction
Your initial tasks in setting up an embedded target are

• Create a target directory structure

• Include desired directories in the MATLAB path

• Create the required target files and locate them in your target directories. In
some cases you modify files provided by the Real-Time Workshop Embedded
Coder.

The following sections explain how to organize your target directories and files
and add them to the your MATLAB path. They also provide high-level
descriptions of the files to be stored in each directory of the structure.

You should follow the conventions described. By doing so, you can make your
embedded targets consistent, easy to understand, and efficient. The
conventions in this section provide guidelines for the root target directory and
key directories immediately under it. You can, of course, define further
subdirectories if your target is complex or if you need a more modular
structure.

Directory and File Naming Conventions

4-3

Directory and File Naming Conventions
For an actual target implementation, the recommended directory and file
naming conventions are

• Use the name of the target processor (for example, hc12 or c166) or operating
system (for example, osek).

• For subdirectories containing files associated with specific development
environments or tools, use the name of the tool (for example, codewarrior).

• Use lower case only.

• Do not embed spaces in directory names. Spaces in directory names cause
errors with many third-party development environments.

In this document, mytarget is a placeholder name that represents directories
and files that use the target’s name. The names dev_tool1, dev_tool2...
represent subdirectories containing files associated with development
environments or tools.

4 Target Directories, Paths, and Files

4-4

Target Directory Structure and MATLAB Path
You should create a directory structure like that shown in Figure 4-1 for your
target files. The top-level directory in this structure, mytarget, is the target
root directory.

Figure 4-1: Recommended Target Directory Structure

The contents of the target root directory and its subdirectories (as well as
optional additional directories) are discussed in “Target Directories and Files”
on page 4–6.

Adding Target Directories to the MATLAB Path
The directories shown in Figure 4-1 must be added to the MATLAB path.

The directories labeled dev_tool1, dev_tool2 in Figure 4-1 contain files
associated with specific development environments or tools (dev_tool1,
dev_tool2...) that are supported by your target.

Location of Target Directories
Note carefully the following rules for locating your target directories:

• For embedded targets developed by The MathWorks that are installed with
MATLAB, the target root directory should be located under
matlabroot/toolbox/rtw/targets/.

mytarget

mytarget

blocks

dev_tool1

dev_tool2

These directories must be added to the
MATLAB path.

Target Directory Structure and MATLAB Path

4-5

• For embedded targets not developed by The MathWorks, the target root
directory should not be located anywhere in the MATLAB directory tree (that
is, in or under the matlabroot directory). The reason for this restriction is
that if you install a new version of MATLAB, (or reinstall your current
version) the MATLAB directories are recreated. This process deletes any
custom target directories existing within the MATLAB tree.

4 Target Directories, Paths, and Files

4-6

Target Directories and Files

Target Root Directory (mytarget)
This directory contains the key subdirectories for the target (see Figure 4-1).
You can also locate miscellaneous files (such as a readme file) in the target root
directory. The following sections describe required and optional subdirectories
and their contents.

Target Directory (mytarget/mytarget)
This directory contains files that are central to the target, such as the system
target file (STF) and template makefile (TMF). “Files in the Target Directory”
on page 4–10 Summarizes the files that should be stored in
mytarget/mytarget, and provides pointers to detailed information about these
files.

Note mytarget/mytarget should be on the MATLAB path.

Target Block Directory (mytarget/blocks)
If your target includes device drivers or other blocks, locate the block
implementation files in this directory. mytarget/blocks contains

• Compiled block MEX- files

• Source code for the blocks

• TLC inlining files for the blocks

• Library models for the blocks (if you provide your blocks in one or more
libraries)

Note mytarget/blocks should be on the MATLAB path.

You can also store demo models and any supporting M-files in
mytarget/blocks. Alternatively, you can create a mytarget/mytargetdemos
directory, which should also be on the MATLAB path.

Target Directories and Files

4-7

To display your blocks in the standard Simulink Library Browser and/or
integrate your demo models into the standard Demos page of the Help browser
and Start button, you can create the files described below and store them in
mytarget/blocks.

mytarget/blocks/slblocks.m
This file allows a group of blocks to be integrated into the Simulink Library and
Simulink Library Browser.

Example slblocks.m File.

function blkStruct = slblocks
% Information for "Blocksets and Toolboxes" subsystem
blkStruct.Name = sprintf('Embedded Target\n for MYTARGET');
blkStruct.OpenFcn = 'mytargetlib';
blkStruct.MaskDisplay = 'disp(''MYTARGET'')';

% Information for Simulink Library Browser
Browser(1).Library = 'mytargetlib';
Browser(1).Name = 'Embedded Target for MYTARGET';
Browser(1).IsFlat = 1;% Is this library "flat" (i.e. no
subsystems)?

blkStruct.Browser = Browser;

mytarget/blocks/demos.xml
This file provides information about the components, organization, and
location of demo models. MATLAB uses this information to place the demo in
the appropriate place in the Demos page of the Help browser and Start button.

4 Target Directories, Paths, and Files

4-8

Example demos.xml File.

<?xml version="1.0" encoding="utf-8"?>
<demos>
 <name>Embedded Target for MYTARGET</name>
 <type>simulink</type>
 <icon>$toolbox/matlab/icons/boardicon.gif</icon>
 <description source = "file">mytarget_overview.html</description>

 <demosection>
 <label>Multirate model</label>
 <demoitem>
 <label>MYTARGET demo</label>
 <file>mytarget_overview.html</file>
 <callback>mytarget_model</callback>
 </demoitem>
 </demosection>

</demos>

Development Tools Directory (mytarget/dev_tool1,
mytarget/dev_tool2)
These directories contain files associated with specific development
environments or tools (dev_tool1,dev_tool2...). Normally, your target
supports at least one such development environment and invokes its compiler,
linker, and other utilities during the build process. mytarget/dev_tool1
includes linker command files, startup code, hook functions, and any other files
required to support this process.

For each development environment, you should provide a separate directory.

You should use the target preferences mechanism (see Chapter 8, “Using
Target Preferences”) to store information about a user’s choice of development
environment or tool, paths to the installed development tools, and so on. Using
target preferences data in this way lets your build process code select the
appropriate development environment and invoke the appropriate compiler
and other utilities. See the code excerpt in “mytarget_default_tmf.m Example
Code” on page 6-11 for an example of how to use target preferences data for this
purpose.

Target Directories and Files

4-9

Target Preferences Directory
(mytarget/mytarget/@mytarget)
If you create a target preferences class to store information about user
preferences, you should store data class definition files and other files that
support your target-specific preferences in mytarget/mytarget/@mytarget.
The Simulink Data Class Designer creates the @mytarget directory
automatically within the parent directory. See Chapter 8, “Using Target
Preferences” for further information.

Target Source Code Directory (mytarget/src)
This directory is optional. If the complexity of your target requires it, you can
use mytarget/src to store any common source code and configuration code
(such as boot and startup code).

4 Target Directories, Paths, and Files

4-10

Files in the Target Directory
The target directory mytarget/mytarget contains key files in your target
implementation. These include the system target file, template makefile, main
program module, and optional M and TLC hook files that let you add
target-specific actions to the build process.

mytarget.tlc
mytarget.tlc is the system target file (STF). Functions of the STF include

• Making the target visible in the System Target File Browser

• Definition of code generation options for the target (inherited and
target-specific)

• Providing an entry point for the top-level control of the TLC code generation
process.

You should base your STF on ert.tlc, the STF provided by Real-Time
Workshop Embedded Coder.

Chapter 5, “System Target Files” gives detailed information on the structure of
the STF, and also gives instructions on how to customize an STF to:

• Display your target in the System Target File Browser

• Add your own target options to the Configuration Parameters dialog

• Tailor the code generation and build process to the requirements of your
target

mytarget.tmf
mytarget.tmf is the template makefile for building an executable for your
target.

For basic information on the structure and operation of template makefiles, see
Chapter 6, “Template Makefiles.”

If your target development environment requires automation of a modern
integrated development environment (IDE) rather than use of a traditional
make utility, see Chapter 9, “Interfacing to Development Tools.”

It is often necessary to create multiple template makefiles to support different
development environments. See “Supporting Multiple Development

Files in the Target Directory

4-11

Environments” on page 5-33 and “mytarget_default_tmf.m Example Code” on
page 6-11 for information.

mytarget_default_tmf.m
This file is optional. You can implement a mytarget_default_tmf.m file to
select the correct template makefile, based on user preferences. See “Setting
Up a Template Makefile” on page 6-10.

mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code
generation environment. See “Using mytarget_settings.tlc” on page 5–28 for
details.

mytarget_genfiles.tlc
This file is optional. mytarget_genfiles.tlc is useful as a central file from
which to invoke any target-specific TLC files that generate additional files as
part of your target build process. For example, your target may create
sub-makefiles or project files for a development environment, or command
scripts for a debugger to do automatic downloads. See “Using
mytarget_genfiles.tlc” on page 5–31 for details.

mytarget_main.c
A main program module is required for your target. To provide a main module,
you can either

• Modify the ert_main.c module provided by Real-Time Workshop Embedded
Coder

• Generate mytarget_main.c during the build process

The “Data Structures and Program Execution” chapter of the Real-Time
Workshop Embedded Coder documentation contains a detailed description of
the operation of ert_main.c. The chapter also contains guidelines for
generating and modifying a main program module.

The “Advanced Code Generation Features” chapter of the Real-Time Workshop
Embedded Coder documentation describes how you can generate a customized
main program module.

4 Target Directories, Paths, and Files

4-12

STF_make_rtw_hook.m
STF_make_rtw_hook.m is an optional hook file that you can use to invoke
target-specific functions or executables at specified points in the build process.
STF_make_rtw_hook.m implements a function that dispatches to a specific
action dependending on the method argument that is passed into it.

The “Advanced Code Generation Features” section of the Real-Time Workshop
Embedded Coder documentation describes the operation of the
STF_make_rtw_hook.m hook file in detail.

STF_wrap_make_cmd_hook.m
Use this file to override the default Real-Time Workshop behavior for selecting
the appropriate compiler tool to be used in the build process.

By default, the Real-Time Workshop build process is based on makefiles. On
PC hosts, the build process creates model.bat, an MS-DOS batch file.
model.bat sets up the appropriate environment variables for the compiler,
linker and other utilities, and invokes a make utility. The batch file, model.bat,
obtains the required environment variable settings from the MAKECMD field in
the template makefile. The standard template makefiles supplied by
Real-Time Workshop support only standard compilers that build executables
on the host system.

When developing an embedded target, you often need to override these
defaults. Typically, you need to support one or more target-specific
cross-development systems, rather than supporting compilers for the host
system. The STF_wrap_make_cmd_hook mechanism provides a way to set up an
environment specific to an embedded development tool.

Note that the naming convention for this file is not based on the target name.
It is based on the concatenation of the system target file name, STF, with the
string '_wrap_make_cmd_hook'.

For an example make command hook file, see
matlabroot/toolbox/rtw/rtw/wrap_make_cmd.m.

Stub makefiles. Many modern cross-development systems, such as Metrowerks
CodeWarrior, are based on project files rather than makefiles. If the interface
to the embedded development system is not makefile based, one recommended
approach is to create a stub makefile. When the build process invokes the stub
makefile, no action takes place.

Files in the Target Directory

4-13

The _wrap_make_cmd_hook Mechanism. A recommended approach to supporting
non-host-based development systems is to provide a hook file that is called
instead of the default host-based compiler selection.

To do this, create a STF_wrap_make_cmd_hook.m file. If this file exists, the build
process calls it instead of the default compiler selection process. Make sure
that:

• The file is on the MATLAB path.

• The filename is the name of your STF, prepended to the string
'__wrap_make_cmd_hook.m'.

• The hook function implemented in the file follows the function prototype
shown in the code example below.

A typical approach would be to write a STF_wrap_make_cmd_hook.m file that
creates a MS-DOS batch file (model.bat). The batch file first sets up
environment variables for the embedded target development system. Then, it
invokes the embedded target’s make utility on the generated makefile. The
STF_wrap_make_cmd_hook function should return a system command that
invokes model.bat.

This approach is shown in “Example STF_wrap_make_cmd_hook Function” on
page 4-14.

Alternatively, any MS-DOS batch file can be created by
STF_wrap_make_cmd_hook, and the function can return any command; it is not
limited to model.bat. Like the exit case of the STF_make_rtw_hook.m
mechanism, this provides the flexibility to invoke other utilities or
applications.

Note that on a PC host, Real-Time Workshop checks the standard output
(STDOUT) for an appropriate build success string. By default, the string is

"### Created"

You can change this specifying a different BUILD_SUCCESS variable in the
template makefile.

4 Target Directories, Paths, and Files

4-14

Example STF_wrap_make_cmd_hook Function.
function makeCmdOut = stfname_wrap_make_cmd_hook(args)
 makeCmd = args.makeCmd;
 modelName = args.modelName;
 verbose = args.verbose;

 % args.compilerEnvVal not used
 cmdFile = ['.\',modelName, '.bat'];
 cmdFileFid = fopen(cmdFile,'wt');
 if ~verbose
 fprintf(cmdFileFid, '@echo off\n');
 end

 try
 prefs = RTW.TargetPrefs.load('mytarget.prefs');
 catch
 error(lasterr);
 end

 fprintf(cmdFileFid, '@set TOOL_VAR1=%s\n', prefs.ImpPath);
 fprintf(cmdFileFid, '@set TOOL_VAR2=x86-win32\n');
 toolRoot = fullfile(prefs.ImpPath,'host','tool','4.4b');
 fprintf(cmdFileFid, '@set TOOL_VAR3=%s\n', toolRoot);
 path = getenv('Path');
 path1 = fullfile(prefs.ImpPath,'host','license;');
 if ~isempty(strfind(path,path1)) path1 = ''; end
 fprintf(cmdFileFid, '@set Path=%s%s%s\n', path1, path);
 fullMakeCmd = fullfile(prefs.ImpPath,'host','tool',...
 'bin', makeCmd);
 fprintf(cmdFileFid, '%s\n', fullMakeCmd);
 fclose(cmdFileFid);
 makeCmdOut = cmdFile;

STF_rtw_info_hook.m (obsolete)
Prior to MATLAB release 14, custom targets supplied target-specific
information with a hook file (referred to as STF_rtw_info_hook.m.) The
STF_rtw_info_hook specified properties such as word sizes for integer data
types (for example, char, short, int, and long), and C implementation-specific
properties of the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog. Using this
dialog, you can specify all properties that were formerly specified in your
STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files continue to
operate correctly. However, you should convert your target and models to use
the Hardware Implementation pane. The simple conversion process is

Files in the Target Directory

4-15

described in the “Hook File Compatibility” section of the Real-Time Workshop
6.0 Release Notes.

info.xml
This file provides information to MATLAB that specifies where to display the
target toolbox on the MATLAB Start button menu.

Example info.xml File. This example shows you how to set up access to a target’s
demo page and target preferences GUI from the MATLAB Start button. See
also “Making Target Preferences Available to the End User” on page 8-11.

<productinfo>

<matlabrelease>13</matlabrelease>
<name>Embedded Target for MYTARGET</name>
<type>simulink</type>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>

<list>

<listitem>
<label>Demos</label>
<callback>demo simulink 'Embedded Target for MYTARGET'</callback>
<icon>$toolbox/matlab/icons/demoicon.gif</icon>
</listitem>

<listitem>
<label>MYTARGET Target Preferences</label>
<callback>mytargetTargetPrefs =
RTW.TargetPrefs.load('mytarget.prefs');
gui(mytargetTargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

</list>
</productinfo>

mytarget_overview.html
By convention, this file serves as home page for the target demos.

4 Target Directories, Paths, and Files

4-16

The <description> field in demos.xml should point to
mytarget_overview.html (see “mytarget/blocks/demos.xml” on page 4-7).

Example mytarget_overview.html File.

<html>
<head><title>Embedded Target for MYTARGET</title></head><body>
<p style="color:#990000; font-weight:bold; font-size:x-large">Embedded Target
for MYTARGET Demonstration Model</p>

<p>This demo provides a simple model that allows you to generate an executable
for a supported target board. You can then download and run the executable and
set breakpoints to study and monitor the execution behavior.</p>

</body>
</html>

Additional Directories and Files for Externally Developed Targets

4-17

Additional Directories and Files
for Externally Developed Targets

If you are developing an embedded target that is not installed into the
MATLAB tree, you should create the following within mytarget/mytarget, for
the convenience of your users.

mytarget/mytarget/mytarget_setup.m
This M-file script adds the necessary paths for your target to the MATLAB
path. Your documentation should instruct users to run the script when
installing the target.

You should include a call to the MATLAB function savepath in your
mytarget_setup.m script. This function saves the added paths, so users need
to run mytarget_setup.m only once.

The following code is an example mytarget_setup.m file.

function mytarget_setup()
curpath = pwd;
tgtpath = curpath(1:end-length('\mytarget'));
addpath(fullfile(tgtpath, 'mytarget'));
addpath(fullfile(tgtpath, 'dev_tool1'));
addpath(fullfile(tgtpath, 'blocks'));
addpath(fullfile(tgtpath, 'mytargetdemos'));
savepath;
disp('MYTARGET Target Path Setup Complete.');

mytarget/mytarget/doc
You should put all documentation related to your target in the directory
mytarget/mytarget/doc.

4 Target Directories, Paths, and Files

4-18

5

System Target Files

Introduction (p. 5-2) Overview of system target files.

System Target File Naming and
Location Conventions (p. 5-3)

Requirements and recommendations for the name and
installed location of system target files.

System Target File Structure (p. 5-4) Detailed structure of system target files.

Defining and Displaying Custom
Target Options (p. 5-19)

Compatibility issues related to the definition and display
of target-specific options in the Configuration
Parameters GUI.

Tutorial: Creating a Custom Target
Configuration (p. 5-35)

Exercise in creation of an ERT-based target.

5 System Target Files

5-2

Introduction
The system target file (STF) exerts overall control of the code generation stage
of the build process. The STF also lets you control the presentation of your
target to the end user. The STF provides

• Definitions of variables that are fundamental to the build process, such as
code format to be generated

• The main entry point to the top-level TLC program that generates code

• Target information for display in the System Target File Browser

• A mechanism for defining target-specific code generation options (and other
parameters affecting the build process) and for displaying them in the
Configuration Parameters dialog

• A mechanism for inheriting options from another target (such as the
Embedded Real-Time (ERT) target)

This chapter provides information on the structure of the STF, guidelines for
customizing an STF, and a basic tutorial that helps you get a skeletal STF up
and running.

Note that, although the STF is a Target Language Compiler (TLC) file, it
contains embedded M-code. Before creating or modifying an STF, you should
acquire a working knowledge of TLC and of the M language. The Target
Language Compiler documentation and the “M-File Programming” section of
the MATLAB documentation describe the features and syntax of both the TLC
and MATLAB languages.

While reading this chapter, you may want to refer to the STFs provided with
Real-Time Workshop. Most of these files are stored in the target-specific
directories under matlabroot/rtw/c. Additional STFs are stored under
matlabroot/toolbox/rtw/targets.

System Target File Naming and Location Conventions

5-3

System Target File Naming and Location Conventions
An STF must be located in a directory on the MATLAB path for the target to
be properly displayed in the System Target File Browser and invoked in the
build process. Follow the location and naming conventions for STFs and related
target files given in Chapter 4, “Target Directories, Paths, and Files.”

Note The rules for the location of target files differ, depending upon whether
the target is internally developed at The MathWorks or not.
Internally-developed targets that are installed with MATLAB are normally
located in the MATLAB directory tree (that is, in or under the matlabroot
directory). If you are an external target developer, your target root directory
should not be located anywhere in the MATLAB directory tree. The reason for
this restriction is that if you install a new version of MATLAB, (or reinstall
your current version) the MATLAB directories are recreated. This process
deletes any custom target directories existing within the MATLAB tree.

5 System Target Files

5-4

System Target File Structure
This section is a guide to the structure and contents of an STF. The following
listing shows the general structure of an STF. Note that this is not a complete
code listing of an STF. The listing consists of excerpts from each of the sections
that make up an STF.

%%----------------------------
%% Header Comments Section
%%----------------------------
%% SYSTLC: Example Real-Time Target
%% TMF: my_target.tmf MAKE: make_rtw EXTMODE: ext_comm
%% Inital comments contain directives for STF Browser.
%% Documentation, date, copyright, and other info may follow.

.

.
%selectfile NULL_FILE

.

.
%%----------------------------
%% TLC Configuration Variables Section %%----------------------------
%% Assign code format, language, target type.
%%
%assign CodeFormat = "Embedded-C"
%assign TargetType = "RT"
%assign Language = "C"
%%
%%----------------------------
%% (OPTIONAL) Import Target Settings
%%----------------------------
%include "mytarget_settings.tlc"
%%
%%----------------------------
%% TLC Program Entry Point
%%----------------------------
%% Call entry point function.
%include "codegenentry.tlc"
%%
%%----------------------------
%% (OPTIONAL) Generate Files for Build Process
%%----------------------------
%include "mytarget_genfiles.tlc"
%%----------------------------
%% RTW_OPTIONS Section
%%----------------------------
/%
BEGIN_RTW_OPTIONS
%% Define rtwoptions structure array. This array defines target-specific
%% code generation variables, and controls how they are displayed.
rtwoptions(1).prompt = 'example code generation options';

.

System Target File Structure

5-5

.
rtwoptions(6).prompt = 'Show eliminated statements';
rtwoptions(6).type = 'Checkbox';

.

.
%--%
% Configure RTW code generation settings %
%--%

.

.
%%----------------------------
%% rtwgensettings Structure
%%----------------------------
%% Define suffix string for naming build directory here.
rtwgensettings.BuildDirSuffix = '_mytarget_rtw'
%% (OPTIONAL) target inheritance declaration
rtwgensettings.DerivedFrom = 'ert.tlc';
%% (OPTIONAL) r14 callback compatibility declaration
rtwgensettings.Version = '1';
%% (OPTIONAL) other rtwGenSettings fields...

.

.
END_RTW_OPTIONS
%/
%%----------------------------
%% targetComponentClass - MATHWORKS INTERNAL USE ONLY
%% REMOVE NEXT SECTION FROM USER_DEFINED CUSTOM TARGETS
%%----------------------------
/%
BEGIN_CONFIGSET_TARGET_COMPONENT
targetComponentClass = 'Simulink.ERTTargetCC';
END_CONFIGSET_TARGET_COMPONENT
%/

Note If you are creating a custom target based on an existing STF , you must
remove the targetComponentClass section (bounded by the directives
BEGIN_CONFIGSET_TARGET_COMPONENT and
END_CONFIGSET_TARGET_COMPONENT). This section is reserved for the use of
targets developed internally by the MathWorks.

Header Comments
These lines at the head of the file are formatted as TLC comments. They
provide required information to the System Target File Browser and to the
build process. Note that you must place the browser comments at the head of
the file, before any other comments or TLC statements.

5 System Target Files

5-6

The presence of the comments enables Real-Time Workshop to detect STFs.
When the System Target File Browser is opened, Real-Time Workshop scans
the MATLAB path for TLC files that have correctly formatted header
comments.

The comments contain the following directives:

• SYSTLC: This string is a descriptor that appears in the browser.

• TMF: Name of the template makefile (TMF) to use during build process. When
the target is selected, this filename is displayed in the Template makefile
field of the Real-Time Workshop pane of the Configuration Parameters
dialog.

• MAKE: make command to use during build process. When the target is selected,
this command is displayed in the Make command field of the Real-Time
Workshop pane of the Configuration Parameters dialog.

• EXTMODE: Name of external mode interface file (if any) associated with your
target. If your target does not support external mode, use no_ext_comm.

The following header comments are from matlabroot/rtw/c/ert/ert.tlc.

%% SYSTLC: RTW Embedded Coder TMF: ert_default_tmf MAKE: make_rtw \
%% EXTMODE: ext_comm
%% SYSTLC: Visual C/C++ Project Makefile only for the RTW Embedded Coder\
%% TMF: ert_msvc.tmf MAKE: make_rtw EXTMODE: ext_comm

Note that you can specify more than one group of directives in the header
comments. Each such group is displayed as a different target configuration in
the System Target File Browser. In the above example, the first two lines of
code specify the default configuration of the ERT target. The next two lines
specify a configuration that generates a Visual C/C++ project makefile, using
the template makefile ert_msvc.tmf. The figure below shows how these
configurations appear in the System Target File Browser.

System Target File Structure

5-7

See “Tutorial: Creating a Custom Target Configuration” on page 5-35 for an
example of customized header comments.

TLC Configuration Variables
This section of the STF assigns global TLC variables that affect the overall code
generation process.

Note For an embedded target, in almost all cases you should simply use the
global TLC variable settings used by the ERT target (ert.tlc). It is especially
important that your STF select the Embedded-C code format.

Make sure values are assigned to the following variables:

• CodeFormat: The CodeFormat variable selects one of the available code
formats. The Embedded-C format is used by the ERT target. Your ERT-based
target should specify Embedded-C format. Embedded-C format is designed for
production code, minimal memory usage, static memory allocation, and a
simplified interface to generated code.

For information on other code formats, see the “Generated Code Formats”
section of the Real-Time Workshop documentation.

• Language: Selects code generation language. Currently C is the only valid
value.

It is possible to generate code in a language other than C. To do this would
require considerable development effort, including reimplementation of all
block target files to generate the desired target language code. See the
Target Language Compiler documentation for a discussion of the issues.

5 System Target Files

5-8

• TargetType: Real-Time Workshop defines the preprocessor symbols RT and
NRT to distinguish simulation code from real-time code. These symbols are
used in conditional compilation. The TargetType variable determines
whether RT or NRT is defined.

Most targets are intended to generate real-time code. They assign
TargetType as follows.
%assign TargetType = "RT"

Some targets, such as the Simulink Accelerator, generate code for use in non
real-time only. Such targets assign TargetType as follows.
%assign TargetType = "NRT"

See “Other Preprocessor Symbols” on page 10–7 for further information on
the use of these symbols.

TLC Program Entry Point
and Related %includes
The code generation process normally begins with codegenentry.tlc. The STF
invokes codegenentry.tlc as follows.

%include "codegenentry.tlc"

Note codegenentry.tlc and the lower-level TLC files assume that
CodeFormat, TargetType, and Language have been correctly assigned. Set
these variables before including codegenentry.tlc.

If you need to implement target-specific code generation features, you should
include the TLC files mytarget_settings.tlc and mytarget_genfiles.tlc
in your STF. These files provide a mechanism for executing custom TLC code
before and after invoking codegenentry.tlc. For information on these
mechanisms, see

• “Using mytarget_settings.tlc” on page 5–28 for an example of custom TLC
code for execution before the main code generation entry point.

• “Using mytarget_genfiles.tlc” on page 5–31 for an example of custom TLC
code for execution after the main code generation entry point.

System Target File Structure

5-9

• “Understanding and Using the Build Process” on page 3–8 for general
information on the build process, and for information on other build process
customization hooks.

Another way to customize the code generation process is to call lower-level
functions (normally invoked by codegenentry.tlc) directly, and include your
own TLC functions at each stage of the process. This approach should be taken
with caution. See the Target Language Compiler documentation for guidelines.
The lower-level functions called by codegenentry.tlc are

• genmap.tlc: maps the block names to corresponding language-specific block
target files.

• commonsetup.tlc: sets up global variables.

• commonentry.tlc: starts the process of generating code in the format
specified by CodeFormat.

RTW_OPTIONS Section
The RTW_OPTIONS section is bounded by the directives:

/%
BEGIN_RTW_OPTIONS
.
.
END_RTW_OPTIONS
%/

The first part of the RTW_OPTIONS section defines an array of rtwoptions
structures. This structure is discussed in “rtwoptions Structure” on page 5-10.

The second part of the RTW_OPTIONS section defines rtwgensettings, a
structure defining the build directory name and other settings for the code
generation process. See “rtwgensettings Structure” on page 5-16 for
information about rtwgensettings.

5 System Target Files

5-10

Note MATLAB Release 14 (Real-Time Workshop v. 6.0 and Real-Time
Workshop Embedded Coder v. 4.0) includes significant changes in the way
that target options are defined, displayed, and operated. If you have developed
a target for an earlier release or are developing a new target for Release 14,
see “Defining and Displaying Custom Target Options” on page 5-19. This is
particularly important if your STF uses rtwoptions callbacks.

rtwoptions Structure
The fields of the rtwoptions structure define variables and associated user
interface elements to be displayed in the Real-Time Workshop pane of the
Configuration Parameters dialog. Using the rtwoptions structure array, you
can define target-specific options displayed in the dialog and organize options
into categories. You can also write callback functions to specify how these
options are processed.

When the Real-Time Workshop pane opens, the rtwoptions structure array is
scanned and the listed options are displayed. Each option is represented by an
assigned user interface element (check box, edit field, menu, or pushbutton),
which displays the current option value.

The user interface elements can be in an enabled or disabled (grayed-out) state.
If an option is enabled, the user can change the option value.

You can also use the rtwoptions structure array to define special NonUI
elements that cause callback functions to be executed, but that are not
displayed in the Real-Time Workshop pane. See “NonUI Elements” on
page 5-14 for details.

The elements of the rtwoptions structure array are organized into groups.
Each group of items begins with a header element of type Category. The
default field of a Category header must contain a count of the remaining
elements in the category.

The Category header is followed by options to be displayed on the Real-Time
Workshop pane. The header in each category is followed by one or more option
definition elements.

The way in which target option groups are displayed depends on whether or not
the STF has been converted for Release 14 compatibility. In Release 14

System Target File Structure

5-11

compatible targets, each category of options corresponds to options listed under
Real-Time Workshop in the Configuration Parameters dialog. (See
“Appearance of Target Options in Release 14 Dialogs” on page 5-25.)

Table 5-1 summarizes the fields of the rtwoptions structure.

Example rtwoptions Structure. The following example is excerpted from
matlabroot/rtw/c/rtwsfcn/rtwsfcn.tlc, the STF for the S-function target.
The code defines an rtwoptions structure array of three elements. The default
field of the first (header) element is set to 2, indicating the number of elements
that follow the header.

rtwoptions(1).prompt = 'RTW S-function code generation options';
rtwoptions(1).type = 'Category';
rtwoptions(1).enable = 'on';
rtwoptions(1).default = 2; % Number of items under this category

% excluding this one.
rtwoptions(1).popupstrings = '';
rtwoptions(1).tlcvariable = '';
rtwoptions(1).tooltip = '';
rtwoptions(1).callback = '';
rtwoptions(1).opencallback = '';
rtwoptions(1).closecallback = '';
rtwoptions(1).makevariable = '';

rtwoptions(2).prompt = 'Create New Model';
rtwoptions(2).type = 'Checkbox';
rtwoptions(2).default = 'on';
rtwoptions(2).tlcvariable = 'CreateModel';
rtwoptions(2).makevariable = 'CREATEMODEL';
rtwoptions(2).tooltip = ...
['Create a new model containing the generated RTW S-Function block inside it'];

rtwoptions(3).prompt = 'Use Value for Tunable Parameters';
rtwoptions(3).type = 'Checkbox';
rtwoptions(3).default = 'off';
rtwoptions(3).tlcvariable = 'UseParamValues';
rtwoptions(3).makevariable = 'USEPARAMVALUES';
rtwoptions(3).tooltip = ...
['Use value instead of variable name in generated block mask edit fields'];

The first element adds RTW S-function code generation options under
Real-Time Workshop in the Configuration Parameters dialog. The options
defined in rtwoptions(2) and rtwoptions(3) display as shown in Figure 5-1.

5 System Target Files

5-12

Figure 5-1: Code Generation Options for S-Function Target

If you want to define a large number of options, you can define multiple
Category groups within a single system target file.

Note the rtwoptions structure and callbacks are written in M-code, although
they are embedded in a TLC file. To verify the syntax of your rtwoptions
structure definitions and code, you can execute the commands in MATLAB by
copying and pasting them to the MATLAB Command Window.

For further examples of target-specific rtwoptions definitions, see “Using
rtwoptions: the Real-Time Workshop Options Example Target” on page 5-15.

System Target File Structure

5-13

Table 5-1 lists the fields of the rtwoptions structure.

Table 5-1: rtwoptions Structure Fields Summary

Field Name Description

callback See “Defining and Displaying Custom Target Options”
on page 5-19 for information on converting callbacks for
release 14 compatibility. For examples of callback
usage, see also “Using rtwoptions: the Real-Time
Workshop Options Example Target” on page 5-15.

closecallback
(obsolete)

If your target uses closecallback, convert to
rtwgensettings.PostApplyCallback instead (see
“rtwgensettings Structure” on page 5-16).

See “Defining and Displaying Custom Target Options”
on page 5-19 for information on converting callbacks for
Release 14 compatibility. For examples of callback
usage, see also “Using rtwoptions: the Real-Time
Workshop Options Example Target” on page 5-15.

closecallback is ignored in release 14. Prior to
Release 14, closecallback specified an M-code
function to call when be executed when the target
options dialog closes.

default Default value of the option (empty if the type is
Pushbutton).

enable Must be on or off. If on, the option is displayed as an
enabled item; otherwise, as a disabled item.

makevariable Template makefile token (if any) associated with
option. The makevariable is expanded during
processing of the template makefile. See “Template
Makefile Tokens” on page 6-2.

NonUI Element that is not displayed, but is used to invoke a
close or open callback. See “NonUI Elements” on
page 5-14.

5 System Target Files

5-14

NonUI Elements. Elements of the rtwoptions array that have type NonUI exist
solely to invoke callbacks. A NonUI element is not displayed in the
Configuration Parameters dialog. You can use a NonUI element if you want
to execute a callback that is not associated with any user interface element,

opencallback
(obsolete)

If your target uses opencallback, we strongly
recommend that you use
rtwgensettings.SelectCallback instead (see
“rtwgensettings Structure” on page 5-16).

If you must maintain use of opencallback, see
“Defining and Displaying Custom Target Options” on
page 5-19 for information on converting callbacks for
Release 14 compatibility. For examples of callback
usage, see also “Using rtwoptions: the Real-Time
Workshop Options Example Target” on page 5-15.

Prior to Release 14, opencallback specified M-code to
be executed when the selected the target from the
System Target File Browser, or during model loading.
The purpose of opencallback is to synchronize the
displayed value of the option with its previous setting.

popupstrings If type is Popup, popupstrings defines the items in the
menu. Items are delimited by the “|” (vertical bar)
character. The following example defines the items of
the MAT-file variable name modifier menu used by
the GRT target.

'rt_|_rt|none'

prompt Label for the option.

tlcvariable Name of TLC variable associated with the option.

tooltip Help string displayed when mouse is over the item.

type Type of element: Checkbox, Edit, NonUI, Popup,
Pushbutton, or Category.

Table 5-1: rtwoptions Structure Fields Summary (Continued)

Field Name Description

System Target File Structure

5-15

when the dialog opens or closes. Only the opencallback and closecallback
fields of a NonUI element have significance. See the next section,“Using
rtwoptions: the Real-Time Workshop Options Example Target” for an example.

Using rtwoptions: the Real-Time Workshop Options Example Target
A working system target file, with M-file callback functions, has been provided
as an example of how to use the rtwoptions structure to display and process
custom options on the Real-Time Workshop pane. The examples are
compatible with the Release 14 callback API (described in “Defining and
Displaying Custom Target Options” on page 5–19).

The example target files are in the directory
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The example target
files are

• usertarget.tlc: The example system target file. This file defines several
menus, check boxes, an edit field, and a nonUI item. The file demonstrates
the use of callbacks, open callbacks, and closed callbacks.

• usertargetcallback.m: An M-file callback invoked by a menu.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Refer to the example files while reading this section. The example system
target file, usertarget.tlc: demonstrates the use of callbacks associated with
the following UI elements:

• The Execution Mode menu executes an open callback that is coded inline
within the STF. This callback displays a message and sets a model property
with a set_param().

• The Real-Time Interrupt Source menu executes a callback defined in an
external M-file, usertargetcallback.m. The TLC variable associated with
the menu is passed in to the callback, which displays the menu’s current
value.

• The edit field Signal Logging Buffer Size in Doubles executes a close
callback defined in an external M-file, usertargetclosecallback.m. The
TLC variable associated with the edit field is passed in to the callback.

• The External Mode check box executes an open callback that is coded inline
within the STF.

5 System Target Files

5-16

• The NonUi item defined in rtwoptions(8) executes open and close callbacks
that are coded inline within the STF. Each callback simply prints a status
message.

We suggest that you study the example code while interacting with the
example target options in the Configuration Parameters dialog. To interact
with the example target file,

1 Make matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo your working
directory.

2 Open any model of your choice.

3 Open the Configuration Parameters dialog and click Real-Time
Workshop.

4 Click Browse. The System Target File Browser opens. Select Real-Time
Workshop Options Example Target. Then click OK.

5 Observe that the Real-Time Workshop pane contains two custom sub-tabs:
userPreferred target options (I) and userPreferred target options (II).

6 As you interact with the options in these two categories and open and close
the Configuration Parameters dialog, observe the messages displayed in
the MATLAB Command Window. These messages are printed from code in
the STF, or from callbacks invoked from the STF.

rtwgensettings Structure
The final part of the STF defines the rtwgensettings structure. This structure
stores information that is written to the model.rtw file and used by the build
process. The rtwgensettings fields of most interest to target developers are

• rtwgensettings.Version: This version compatibility property identifies
targets use Release 14 compatible rtwoptions callbacks. Do not use this field
unless you have converted your callbacks, as described in “Compatibility
Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.DerivedFrom: This string property defines the system
target file from which options are to be inherited. See “Release 14 Target
Options Inheritance” on page 5-23.

System Target File Structure

5-17

• rtwgensettings.SelectCallback: this property specifies a SelectCallback
function. SelectCallback is associated with the target rather than with any
of its individual options. The SelectCallback function is triggered when the
user selects a target with the System Target File browser. When a model
created prior to MATLAB release 14 is opened, the SelectCallback function
is also triggered during model loading.

The SelectCallback function is useful for setting up (or disabling)
configuration parameters specific to the target.

The following code installs a SelectCallback function:
rtwgensettings.SelectCallback = ['my_select_callback_handler(hDlg, hSrc)'];

The arguments to the SelectCallback function (hDlg, hSrc) are handles
to private data used by the callback API functions, as described in
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

Note If you have developed a custom target and you want it to be compatible
with model referencing, you must implement a SelectCallback function to
declare model reference compatibility. See Chapter 7, “Supporting Model
Referencing.”

• rtwgensettings.ActivateCallback: this property specifies an
ActivateCallback function. The ActivateCallback function is triggered
when the active configuration set of the model changes. This could happen
during model loading, and also when the user changes the active
configuration set.

The following code installs an ActivateCallback function:
rtwgensettings.ActivateCallback = ['my_activate_callback_handler(hDlg, hSrc)'];

The arguments to the ActivateCallback function (hDlg, hSrc) are handles
to private data used by the callback API functions, as described in
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.PostApplyCallback: this property specifies a
PostApplyCallback function. The PostApplyCallback function is triggered
when the user clicks the Apply or OK button after editing options in the

5 System Target Files

5-18

Configuration Parameters dialog or the Model Explorer. The The
PostApplyCallback function is called after the changes have been applied to
the configuration set.

The following code installs an PostApplyCallback function:
rtwgensettings.PostApplyCallback = ['my_postapply_callback_handler(hDlg, hSrc)'];

The arguments to the PostApplyCallback function (hDlg, hSrc) are
handles to private data used by the callback API functions, as described in
“Compatibility Issues for rtwoptions Callbacks” on page 5-19.

• rtwgensettings.BuildDirSuffix: Most targets define a string that
identifies build directories created by the target. The build process appends
the string defined in the rtwgensettings.BuildDirSuffix field to the model
name to form the name of the build directory. For example, if you define
rtwgensettings.BuildDirSuffix as follows
rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

the build directories are named model_mytarget_rtw.

Additional Code Generation Options
“Target Language Compiler Variables and Options” in the Real-Time
Workshop documentation describes additional TLC code generation variables.
End users of any target can assign these variables by entering statements of
the form

-aVariable=val

in the TLC options field of the Real-Time Workshop pane.

Alternatively, you can assign these variables in the STF. For readability, we
recommend that you add such assignments in the section of the STF after the
comment Configure RTW code generation settings.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on
STF and other modifications you may need to make to support the Real-Time
Workshop model referencing features.

Defining and Displaying Custom Target Options

5-19

Defining and Displaying Custom Target Options
For Release 14, you view the model options defined in the active configuration
set in the Configuration Parameters dialog, or in the Simulink Model
Explorer. These views, which replace the Simulation Parameters dialog used
in previous releases, feature extensive changes in the appearance and layout
of code generation options and other target-specific options for Real-Time
Workshop targets. This section describes the following compatibility issues
related to the definition and display of target-specific options for custom
targets:

• Callback compatibility: If the rtwoptions array in your custom system
target file contains callbacks, convert your callbacks to use the callback
compatibility API provided in Release 14. See “Compatibility Issues for
rtwoptions Callbacks” on page 5-19.

• Target options inheritance: If your custom target is derived from another
target and inherits options, change your system target file to use the new
inheritance mechanism described in “Release 14 Target Options
Inheritance” on page 5-23.

• Display of target options: Your target options display differently, and you
may want to reorganize them. See “Appearance of Target Options in Release
14 Dialogs” on page 5-25 for information on how custom target options are
displayed.

Compatibility Issues for rtwoptions Callbacks
The callback, opencallback, and closecallback fields of the rtwoptions
array structs (see “rtwoptions Structure” on page 5-10) specify optional M-code
functions that are called when the value of an option changes or when the
Simulation Parameters dialog opens or closes. If your custom system target
file does not specify any such callbacks, your target operates transparently in
the Model Explorer and Configuration Parameters dialog. However, your
target options are displayed differently, as described in “Appearance of Target
Options in Release 14 Dialogs” on page 5-25.

If your custom target does specify callbacks, compatibility issues arise, because
many callbacks depend upon features of the old-style (that is, from releases
prior to Release 14) Simulation Parameters dialog. For example, a change in
the state of one GUI element (such as a check box) may invoke a callback that

5 System Target Files

5-20

attempts to get a handle to another GUI element in order to enable or disable
it.

Real-Time Workshop 6.0 supports a callback compatibility API that lets your
existing rtwoptions callbacks operate under the Model Explorer and
Configuration Parameters dialog views. This is described in the next section,
“How to Convert Your rtwOptions Callbacks” on page 5-20. We strongly
recommend that you convert your callbacks for Release 14 compatibility. If you
do not want to do so, see “Operation of Targets with Unconverted Callbacks” on
page 5-22 to understand how your custom target runs in the Release 14
environment.

How to Convert Your rtwOptions Callbacks. The callback conversion API provides
variables and accessor functions that allow your callbacks to access graphical
elements associated with target options. Also, a version compatibility property,
rtwgensettings.Version, has been added to the rtwgensettings structure in
the system target file. This property identifies targets that have been converted
to use Release 14 compatible callbacks.

The callback API variables are

• model: Handle of the current Simulink model. model can be used as an
argument to get_param and set_param calls. If you use such calls, you do not
need to change them.

• hSrc: This variable is restricted to use in the callback API functions
described below. hSrc provides a handle to private data used by the callback
API functions. Do not set this variable or use it for any other purpose.

• hDlg: This variable is restricted to use in the callback API functions
described below. hDlg provides a handle to private data used by he callback
API functions. Do not set this variable or use it for any other purpose.

The callback API provides accessor functions that let you read and set target
option values, and enable or disable options. In the function descriptions below,
the tlc_var_name argument is the name of the tlcvariable defined for the
option in the rtwoptions struct. The callback API accessor functions are

• slConfigUIGetVal(hDlg, hSrc, 'tlc_var_name'): Returns the current
value of the option specified by the 'tlc_var_name' argument. The data type
of the return value depends on the data type of the option.

Defining and Displaying Custom Target Options

5-21

• slConfigUISetVal:(hDlg, hSrc, 'tlc_var_name', value): Sets the
option specified by the 'tlc_var_name' argument to the value passed in the
value argument.

• slConfigUISetEnabled(hDlg, hSrc, 'tlc_var_name', flag): Enables or
disables the option specified by the 'tlc_var_name' argument. The value
passed in flag should be either 1 (to enable the option) or 0 (to disable the
option).

To convert your rtwOptions callbacks,

1 Identify all references to the old Simulation Parameters dialog handle,
(such as dialogFig or objects accessed through dialogFig) in your
callbacks.

2 Replace such references with equivalent calls to the callback API functions.
Your code should use only the API calls and variables described above to
reference options. See the files described in “Example Callback Code” on
page 5-21.

3 If your target inherits options from an existing target, you should also
convert your target to use the new inheritance mechanism. To learn how to
do this, see “Release 14 Target Options Inheritance” on page 5-23.

4 Declare that your system target file is compliant with the callback API by
adding the following statement in the Configure RTW code generation
settings section of the system target file.

rtwgensettings.Version = '1';

rtwoptions callbacks are executed only if rtwgensettings.Version is set as
shown.

Note If your target defines opencallback functions, open callbacks are called
during model loading, as well as when the you select the target from the
System Target File Browser.

Example Callback Code. An example system target file and callback handlers are
available in the directory
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The example files

5 System Target Files

5-22

illustrate how to use Release 14 compatible callbacks with different types of
GUI elements. The files are

• usertarget.tlc: The example system target file. This file defines several
menus, check boxes, an edit field, and a nonUI item. The file demonstrates
the use of callbacks, open callbacks, and close callbacks.

• usertargetcallback.m: An M-file callback invoked by a popup.

• usertargetclosecallback.m: An M-file callback invoked by an edit field.

Operation of Targets with Unconverted Callbacks. Callback conversion is
recommended, but not required. If you do not want to convert your callbacks,
your target operates as follows:

• When the target is selected with the System Target File Browser, the target
options are displayed in the Model Explorer and Configuration Parameters
dialogs, as described in “Appearance of Target Options in Release 14
Dialogs” on page 5-25. However, any callbacks specified in the rtwoptions
array are ignored.

An additional button labeled Launch old simprm dialog is displayed at the
bottom of all target-specific pages of the Model Explorer and Configuration
Parameters dialogs. When the user clicks this button, the old Simulation
Parameters dialog opens. As the user interacts with the dialog, existing
callbacks are executed.

The figure below shows the Model Explorer view.

Defining and Displaying Custom Target Options

5-23

Note If your custom target uses unconverted callbacks, you should inform
end users of your target that they should open and use the old Simulation
Parameters dialog when setting target options. If they do not do so, options
are not set correctly.

Release 14 Target Options Inheritance
In previous releases, many custom targets have used the technique of merging
rtwoptions structures in order to derive or inherit options from an existing
target. For example, the following code, from a Release 13 target, creates an

5 System Target Files

5-24

rtwoptions structure and inherits the rtwoptions of the ERT target merging
them into the structure.

/%
 BEGIN_RTW_OPTIONS
rtwoption_index = 0;

rtwoption_index = rtwoption_index + 1;
rtwoptions(rtwoption_index).prompt = 'mytargets Options';
rtwoptions(rtwoption_index).type = 'Category';
rtwoptions(rtwoption_index).enable = 'on';
rtwoptions(rtwoption_index).default = 5; % number of items under mytargets
rtwoptions(rtwoption_index).popupstrings = '';
rtwoptions(rtwoption_index).tlcvariable = '';
rtwoptions(rtwoption_index).tooltip = '';
rtwoptions(rtwoption_index).callback = '';
rtwoptions(rtwoption_index).opencallback = '';
rtwoptions(rtwoption_index).closecallback = '';
rtwoptions(rtwoption_index).makevariable = '';
%other rtwoptions elements not shown here
...
% Inherit ERT options
file = fullfile(matlabroot, 'rtw', 'c', 'ert', 'ert.tlc');
propsObj = tlc.rtwoptions(file);
props = propsObj.getOptions;
rtwoptions = propsObj.combineCategories(props,rtwoptions);

Real-Time Workshop 6.0 supports a new, simplified inheritance mechanism.
The string property rtwgensettings.DerivedFrom has been added to the
rtwgensettings structure. This property defines the system target file from
which options are to be inherited. You should convert your custom target to use
this mechanism as follows:

1 Remove old inheritance code (such as the four line after the %Inherit ERT
options comment in the example above).

2 Set the rtwgensettings.DerivedFrom property as in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be
inherited. For example:

rtwgensettings.DerivedFrom = 'ert.tlc';

When the Model Explorer or Configuration Parameters dialog executes this
line of code, it includes the options from stf.tlc automatically. If stf.tlc is a

Defining and Displaying Custom Target Options

5-25

MathWorks internal system target file that has been converted to a new layout,
the dialog displays the inherited options using the new layout.

Appearance of Target Options in Release 14 Dialogs
In the old-style Simulation Parameters dialog, target options are organized
into functional groups, displayed under control of the Category menu in the
Real-Time Workshop pane. The items in the Category menu correspond to
the elements of the rtwoptions structure array. Each group of rtwoptions
elements is delimited by a header element of type Category.

The following figure shows a typical group of target options as displayed in the
old-style Simulation Parameters dialog.

The new Configuration Parameters dialog preserves the organization of your
custom target’s rtwoptions structure array. However, the Category menu has
been replaced by a tabbed selection mechanism. In the Model Explorer dialog
view, each category of options corresponds to a tab. In the Configuration
Parameters dialog view, each category of options corresponds to an element of
the list on the left pane. The spacing and layout of options within each group of
options is controlled by Real-Time Workshop.

The figure below shows the same target options, as organized and displayed in
the Model Explorer view. This figure shows how the target options appear
before any Release 14 compatibility conversions are made.

5 System Target Files

5-26

After converting the above target to use Release 14 compatible callbacks and
inheritance options, the target’s inherited options are displayed in a more
compact form (under categories such as Interface, Templates, and so on) and
the Launch old simprm dialog... button is removed, as shown in this figure.

Defining and Displaying Custom Target Options

5-27

Real-Time Workshop provides the organization of options described above as a
default layout. This lets you continue to use your custom targets with minimal
change. This default differs considerably from many of the targets developed
internally at The MathWorks (such as the ERT and GRT targets). These
MathWorks targets have been converted to use technologies and features that
are currently available only to developers at the MathWorks. In a future
release, The MathWorks plans to provide information and APIs that let you
convert your custom targets to take full advantage of these technologies and
features.

5 System Target Files

5-28

Tips and Techniques for Customizing Your STF
This section includes information on techniques for customizing your STF,
including

• How to invoke custom TLC code from your STF: See “Required and
Recommended %includes” on page 5-28.

• How to inherit target options from another STF: See “Inherited Target
Options” on page 5-32.

• Approaches to supporting multiple development environments with single or
multiple STFs: See “Supporting Multiple Development Environments” on
page 5-33.

Required and Recommended %includes
If you need to implement target-specific code generation features, we
recommend that your STF include the TLC files mytarget_settings.tlc and
mytarget_genfiles.tlc.

mytarget_settings.tlc provides a mechanism for executing custom TLC code
before the main code generation entry point. See “Using mytarget_settings.tlc”
on page 5–28.

Once your STF has set up any required TLC environment, you must include
codegenentry.tlc to start the standard code generation process.

mytarget_genfiles.tlc provides a mechanism for executing custom TLC code
after the main code generation entry point. See “Using mytarget_genfiles.tlc”
on page 5–31.

Using mytarget_settings.tlc
This file is optional. Its purpose is to centralize global settings in the code
generation environment. Use mytarget_settings.tlc to

• Define required TLC paths with %addincludepath directives. You may need
to do this if you create target-specific TLC function libraries.

• Create records that store target-specific path information and preference
settings in the CompiledModel general record. This provides a clean
mechanism for passing this information into the TLC code generation
environment.

Tips and Techniques for Customizing Your STF

5-29

• Check user settings for code generation options. If incorrect or unsupported
option settings are found, issue the appropriate error or warning and abort
the build process if necessary.

mytarget_settings.tlc Example Code. In the TLC code example below, the structure
Settings is added to the CompiledModel record. The Settings structure is
loaded from the stored target preferences (see “Accessing Target Preference
Data from MATLAB” on page 8-13). The Settings structure stores target
preferences data fields Implementation and ImpPath.

After Settings is added to the CompiledModel record, the example code
handles inherited options. In this example, the target is assumed to have
inherited options from the ERT target. The code examines the settings of
inherited ERT code generation options. If the user has selected unsupported
options, warning or error messages are displayed. In some cases, selecting an
unsupported option causes the build process to terminate.

Conditional code at the end of the function allows display of the
Implementation and ImpPath fields in the MATLAB Command Window if
desired.

5 System Target Files

5-30

%selectfile NULL_FILE

%% Read user preferences for the target and add to CompiledModel
%assign prefs = FEVAL("RTW.TargetPrefs.load","mytarget.prefs","structure")
%addtorecord CompiledModel Settings prefs

%% Check for unsupported Embedded Coder options and error/warn appropriately
%if SuppressErrorStatus == 0
 %assign SuppressErrorStatus = 1
 %assign msg = "Suppressing Error Status as it is not used by this target."
 %warning %<msg>
%endif
%if GenerateSampleERTMain == 1
 %assign msg = "Generating an example main is not supported as the proper main
function is inherently generated. Unselect the \"Generate an example main program\"
checkbox under ERT code generation options."
 %exit %<msg>
%endif

%if GenerateErtSFunction == 1
 %assign msg = "Generating a Simulink S-Function is not supported. Unselect the
\"Create Simulink(S-Function) block\" checkbox under ERT code generation options."
 %exit %<msg>
%endif

%if ExtMode == 1
 %assign msg = "External Mode is not currently supported. Unselect the \"External
mode\" checkbox under ERT code generation options."
 %exit %<msg>
%endif

%if MatFileLogging == 1
 %assign msg = "MAT-file logging is not currently supported. Unselect the
\"MAT-file logging\" checkbox under ERT code generation options."
 %exit %<msg>
%endif

%if MultiInstanceERTCode == 1
 %assign msg = "Generate reuseable code is not currently supported. Unselect the
\"Generate reuseable code\" checkbox under ERT code generation options."
 %exit %<msg>
%endif

%if GenFloatMathFcnCalls == "ISO_C"
 %assign msg = "Target floating point math environments other than ANSI-C are not
currently supported. Select ANSI-C for the \"Target floating point math
environment\" option under ERT code generation options."
 %exit %<msg>
%endif

Tips and Techniques for Customizing Your STF

5-31

%% To display added TLC settings for debugging purposes, set EchoConfigSettings to
1.
%assign EchoConfigSettings = 0
%if EchoConfigSettings
 %selectfile STDOUT
 ###

 IMPLEMENTATION is:
 %<CompiledModel.Settings.Implementation>

 IMPLEMENTATION path is:
 %<CompiledModel.Settings.ImpPath>

 ###
 %selectfile NULL_FILE
%endif

Using mytarget_genfiles.tlc
mytarget_genfiles.tlc (optional) is useful as a central file from which to
invoke any target-specific TLC files that generate additional files as part of
your target build process. For example, your target may create sub-makefiles
or project files for a development environment, or command scripts for a
debugger to do automatic downloads.

The build process can then invoke these generated files either directly from the
make process, or after the executable is created. This is done with the
STF_make_rtw_hook.m mechanism, as described in “STF_rtw_info_hook.m
(obsolete)” on page 4-14.

The following TLC code shows an example mytarget_genfiles.tlc file.

%selectfile NULL_FILE

%assign ModelName = CompiledModel.Name

%% Create Debugger script
%assign model_script_file = "%<ModelName>.cfg"
%assign script_file = "debugger_script_template.tlc"

%if RTWVerbose
 %selectfile STDOUT
 ### Creating %<model_script_file>
 %selectfile NULL_FILE

5 System Target Files

5-32

%endif

%include "%<script_file>"
%openfile bld_file = "%<model_script_file>"
%<CreateDebuggerScript()>
%closefile bld_file

Inherited Target Options
ert.tlc provides a basic set of code generation options for Real-Time
Workshop Embedded Coder. If your target is based on ert.tlc, your STF
should normally inherit the options defined in ERT.

Note The inheritance mechanism described in this section is available as of
Release 14. Targets developed prior to Release 14 should be converted to use
this mechanism as described in “Release 14 Target Options Inheritance” on
page 5-23.

To make options inheritance simple, the Real-Time Workshop provides the
rtwgensettings.DerivedFrom property. This string property defines the
system target file from which options are to be inherited. Set this property as
in the following example

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be
inherited. For example, to inherit options from the ERT target.

rtwgensettings.DerivedFrom = 'ert.tlc';

Handling Unsupported Options
If your target does not support all options inherited from ert.tlc, you should
detect unsupported option settings and display a warning or error message. In
some cases, if a user has selected an option your target does not support, you
may need to abort the build process. For example, if your target does not
support the Generate an example main program option, the build process
should not be allowed to proceed if that option is selected.

Tips and Techniques for Customizing Your STF

5-33

We recommend that you handle these options in mytarget_settings.tlc. See
the example in “Using mytarget_settings.tlc” on page 5-28.

Even though your target may not support all inherited ERT options, it is
required that the ERT options are retained in the Real-Time Workshop pane
of the GUI. Do not simply remove unsupported options from the rtwoptions
structure in the STF. Options must be in the GUI to be scanned by Simulink
when it performs optimizations.

For example, you may want to prevent users from turning off the Single
output/update function option. It may seem safe to remove this option from
the GUI and simply assign the TLC variable CombineOutputUpdateFcns to on.
However, if the option is not included in the GUI, Simulink assumes that
output and update functions are not to be combined. Less efficient code is
generated as a result.

Supporting Multiple Development Environments
Your target may require support for multiple development environments (for
example, two or more cross-compilers) or multiple modes of code generation (for
example, generating a binary executable vs. generating a project file for your
compiler).

One approach to this requirement is to implement multiple STFs; each STF
invokes an appropriate template makefile for the development environment.
This amounts to providing two separate targets.

Another approach is to use a single STF that specifies multiple configurations
in its comment header. The code within the STF then checks the target
preferences to determine which template makefile to invoke. See
“mytarget_default_tmf.m Example Code” on page 6-11 for an example of how
to check target preferences for this information.

One drawback of using a single STF in this way is that the rtwoptions need
conditional sections if the target options are not the same for all of the
configurations the STF supports. The following example (from a hypothetical
example target) defines an rtwoptions menu element differently, depending
on the whether or not the PC (Windows) version of MATLAB is running. This
is determined by calling the MATLAB function ispc. On the PC, the menu
displays a choice of USB or serial ports to be used in communicating with a
target device. Otherwise, the menu displays a choice of UNIX logical devices.

if ispc

5 System Target Files

5-34

 rtwoptions(rtwoption_index).default = 'USB';
 rtwoptions(rtwoption_index).popupstrings =
'USB|COM1|COM2|COM3|COM4';
else
 rtwoptions(rtwoption_index).default = '/dev/ttyS0';
 rtwoptions(rtwoption_index).popupstrings =
'/dev/ttyS0|/dev/ttyS1|/dev/ttyS2|/dev/ttyS3';
end

Tips and Techniques for Customizing Your STF

5-35

Tutorial: Creating a Custom Target Configuration
The purpose of this tutorial is to guide you through the process of creating an
ERT-based target, my_ert_target. This exercise illustrates several tasks that
are usually required when creating a custom target:

• Setting up target directories and modifying the MATLAB path.

• Making modifications to a standard STF and TMF such that the custom
target is visible in the System Target File Browser, inherits ERT options,
displays target-specific options, and generates code with the default
host-based compiler.

• Testing the build process with the custom target, using a simple model that
incorporates an inlined S-function.

During this exercise you implement an operational, but skeletal, ERT-based
target. This target may be useful as a starting point in a complete
implementation of a custom embedded target.

my_ert_target Overview
In the following sections you create a skeletal target, my_ert_target. The
target inherits and supports the standard options of the ERT target, and
displays additional target-specific options in the Configuration Parameters
dialog (see Figure 5-2).

5 System Target Files

5-36

Figure 5-2: Target-Specific Options for my_ert_target

my_ert_target supports a makefile-based build, generating code and
executables that run on the host system. my_ert_target uses the LCC
compiler under Windows. This compiler was chosen because it is readily
available and is distributed with Real-Time Workshop. If you use a different
compiler, you can set up LCC temporarily as your default compiler by typing
the MATLAB command

mex -setup

Tips and Techniques for Customizing Your STF

5-37

Follow the prompts and select LCC.

Note On UNIX systems, make sure that you have a C compiler installed. You
can then do this exercise, substituting appropriate UNIX directory syntax.

You can test my_ert_target with any model that is compatible with the ERT
target. (See the “Requirements and Restrictions” section of the Real-Time
Workshop Embedded Coder documentation.) Generated programs operate
identically to ERT generated programs.

However, to simplify the testing of your target, we recommend testing with
targetmodel.mdl, a very simple fixed-step model (see “Create Test Model and
S-Function” on page 5-44). The S-Function block in targetmodel.mdl uses the
source code from the timestwo example, and generates fully inlined code. See
the Writing S-Functions and Target Language Compiler documentation for a
complete discussion of the timestwo example S-function.

Creating Target Directories
In this section, you create directories to store the target files and add them to
the MATLAB path, following the recommended conventions (see “Directory
and File Naming Conventions” on page 4-3). You also create a directory to store
the test model, S-function, and generated code.

This example assumes that your target and model directories are located
within the directory d:/work. Note that your target and model directories
should not be located anywhere in the MATLAB directory tree (that is, in or
under the matlabroot directory):

1 Create a target root directory, my_ert_target. To do this from the MATLAB
Command Window on Windows, enter:

mkdir d:/work/my_ert_target

2 Within the target root directory, create a subdirectory to store your target
files.

mkdir my_ert_target/my_ert_target

3 Add these directories to your MATLAB path.

5 System Target Files

5-38

addpath d:/work/my_ert_target
addpath d:/work/my_ert_target/my_ert_target

4 Create a directory, my_targetmodel, to store the test model, S-function, and
generated code.

mkdir my_targetModel

Create ERT-Based STF
In this section, you create an STF for your target by copying and modifying the
standard STF for the ERT target. Then you validate the STF by viewing the
new target in the System Target File Browser and the Configuration
Parameters dialog.

Editing the STF
To edit the STF,

1 Change your working directory to you created in “Creating Target
Directories” on page 5-37.

cd d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert.tlc in
d:/work/my_ert_target/my_ert_target and rename it to
my_ert_target.tlc. The file ert.tlc is the STF () for the ERT target.

3 Open my_ert_target.tlc in a text editor of your choice.

4 Generally, the first step in customizing an STF is to replace the header
comment lines with directives that make your STF visible in the System
Target File Browser and define the associated TMF (that you create shortly),
make command, and external mode interface file (if any). See *“Header
Comments” on page 5-5 for a detailed explanation of these directives.

Replace the header comments in my_ert_target.tlc with the following
header comments.

%% SYSTLC: My ERT-based Target TMF: my_ert_target_lcc.tmf MAKE: make_rtw \
%% EXTMODE: no_ext_comm

Tips and Techniques for Customizing Your STF

5-39

5 The file my_ert_target.tlc inherits the standard ERT options, using the
mechanism described in “Inherited Target Options” on page 5-32. Therefore,
the existing rtwoptions structure definition is superfluous. Edit the
RTW_OPTIONS section such that it includes only the following code.
/%
 BEGIN_RTW_OPTIONS

 %--%
 % Configure RTW code generation settings %
 %--%

rtwgensettings.BuildDirSuffix = '_ert_rtw';

 END_RTW_OPTIONS
 %/

6 Delete the code after the end of the RTW_OPTIONS section, which is delimited
by the directives BEGIN_CONFIGSET_TARGET_COMPONENT and
END_CONFIGSET_TARGET_COMPONENT. This code is for MathWorks internal
development use only.

7 Modify the build directory suffix in the rtwgenSettings structure in
accordance with the conventions described in “rtwgensettings Structure” on
page 5-16.

To set the suffix to a string appropriate to the _my_ert_target custom
target, change the line

rtwgensettings.BuildDirSuffix = '_ert_rtw'

to

rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw'

8 Modify the rtwgenSettings structure to inherit options from the ERT target
and declare Release 14 compatibility as described in “rtwgensettings
Structure” on page 5-16. Add the following code to the rtwgenSettings
definition:

rtwgensettings.DerivedFrom = 'ert.tlc';
rtwgensettings.Version = '1';

5 System Target Files

5-40

9 Add an rtwoptions structure that defines a target-specific options category
with three check boxes just after the BEGIN_RTW_OPTIONS directive. The
following code shows the complete RTW_OPTIONS section, including the
rtwgenSettings changes made in previous steps.
/%
 BEGIN_RTW_OPTIONS

 rtwoptions(1).prompt = 'My Target Options';
 rtwoptions(1).type = 'Category';
 rtwoptions(1).enable = 'on';
 rtwoptions(1).default = 3; % number of items under this category
 % excluding this one.
 rtwoptions(1).popupstrings = '';
 rtwoptions(1).tlcvariable = '';
 rtwoptions(1).tooltip = '';
 rtwoptions(1).callback = '';
 rtwoptions(1).opencallback = '';
 rtwoptions(1).closecallback = '';
 rtwoptions(1).makevariable = '';

 rtwoptions(2).prompt = 'Demo option 1';
 rtwoptions(2).type = 'Checkbox';
 rtwoptions(2).default = 'off';
 rtwoptions(2).tlcvariable = 'DummyOpt1';
 rtwoptions(2).makevariable = '';
 rtwoptions(2).tooltip = ['Demo option1 (non-functional)'];
 rtwoptions(2).callback = '';

 rtwoptions(3).prompt = 'Demo option 2';
 rtwoptions(3).type = 'Checkbox';
 rtwoptions(3).default = 'off';
 rtwoptions(3).tlcvariable = 'DummyOpt2';
 rtwoptions(3).makevariable = '';
 rtwoptions(3).tooltip = ['Demo option2 (non-functional)'];
 rtwoptions(3).callback = '';

 rtwoptions(4).prompt = 'Demo option 3';
 rtwoptions(4).type = 'Checkbox';
 rtwoptions(4).default = 'off';
 rtwoptions(4).tlcvariable = 'DummyOpt3';
 rtwoptions(4).makevariable = '';
 rtwoptions(4).tooltip = ['Demo option3 (non-functional)'];
 rtwoptions(4).callback = '';

 %--%
 % Configure RTW code generation settings %
 %--%

rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw';
rtwgensettings.DerivedFrom = 'ert.tlc';

 rtwgensettings.Version = '1';

Tips and Techniques for Customizing Your STF

5-41

END_RTW_OPTIONS
%/

10 Save your changes to my_ert_target.tlc and close the file.

Viewing the STF
At this point, you can verify that the target inherits and displays ERT options
correctly as follows:

1 Create a new model.

2 Open the Configuration Parameters dialog.

3 Select Real-Time Workshop.

4 Click Browse to open the System Target File Browser.

5 In the Browser, scroll through the list of targets to find the new target,
my_ert_target.

6 Select My ERT-based Target as shown below, and click OK.
.

7 The Real-Time Workshop pane now shows that the model is configured for
the my_ert_target target. The RTW system target file, Make command,
and Template makefile fields should appear as follows:

5 System Target Files

5-42

8 Click My Target Options and observe that the target displays the three
check box options defined in the rtwoptions structure, as shown in the
following figure.

Tips and Techniques for Customizing Your STF

5-43

9 Click Real-Time Workshop and reopen the System Target File Browser.

10 Select the RTW Embedded Coder target (ert.tlc) and observe that the
target displays the standard ERT options.

11 Close the model. You do not need to save it.

At this point, the STF for the skeletal target is complete. Note, however, that
the STF header comments reference a TMF, my_ert_target_lcc.tmf. You are
not able to invoke the build process for your target until the TMF file is in place.
In the next section, you create my_ert_target_lcc.tmf.

Create ERT-Based TMF
In this section, you create a TMF for your target by copying and modifying the
standard ERT TMF for the LCC compiler:

5 System Target Files

5-44

1 Check that your working directory is still set to the target file directory you
created previously in “Creating Target Directories” on page 5-37.

d:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert_lcc.tmf in
d:/work/my_ert_target/my_ert_target and rename it to
my_ert_target.tlc. The file ert_lcc.tmf is the ERT compiler-specific
template makefile for the LCC compiler.

3 Open my_ert_target_lcc.tmf in a text editor of your choice.

4 Change the SYS_TARGET_FILE parameter so that the correct file reference is
generated in the make file. Change the line

SYS_TARGET_FILE = ert.tlc

to

SYS_TARGET_FILE = my_ert_target.tlc

5 Save changes to my_ert_target_lcc.tmf and close the file.

Your target can now generate code and build a host-based executable. In the
next sections, you create a test model and test the build process using
my_ert_target.

Create Test Model and S-Function
In this section, you build a simple test model for later use in code generation:

1 Set your working directory to /work/my_targetModel.

cd d:/work/my_targetModel

For the remainder of this tutorial, my_targetModel is assumed to be the
working directory. Your target writes the output files of the code generation
process into a build directory within the working directory. When inlined
code is generated for the timestwo S-function, the build process looks for the
TLC implementation of the S-function in the working directory.

Tips and Techniques for Customizing Your STF

5-45

2 Copy the following C and TLC files for the timestwo S-function from
matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timestwo to your
working directory:

- timestwo.c

- rename_timestwo.tlc

3 Rename the file rename_timestwo.tlc to timestwo.tlc, so that it is used
when generating code.

4 Build the timestwo MEX-file in d:/work/my_targetmodel.

mex timestwo.c

5 Create the following model, using an S-Function block from the Simulink
User-Defined Functions library. Save the model in your working directory
as targetmodel.mdl.

6 Double-click the S-Function block to open the Block Parameters dialog.
Enter the S-function name timestwo. Click OK. The block is now bound to
the timestwo MEX-file.

7 Open the Configuration Parameters dialog and click Solver.

8 Set the solver Type to fixed-step and click Apply.

9 Save the model.

10 Open the scope and run a simulation. Verify that the timestwo S-function
multiplies its input by 2.0.

Keep the targetmodel model open for use in the next section, in which you
generate code using the test model.

5 System Target Files

5-46

Verify Target Operation
In this section you configure targetmodel for the my_ert_target custom
target, and use the target to generate code and build an executable:

1 Open the Configuration Parameters dialog and select Real-Time
Workshop.

2 Click Browse to open the System Target File Browser.

3 In the Browser, select My ERT-based Target and click OK.

4 The Configuration Parameters dialog now displays the Real-Time
Workshop pane for my_ert_target.

5 Select the Generate HTML report option.

6 Click Apply and save the model. The model is configured for my_ert_target.

7 Click Build. If the build is successful, MATLAB displays the message below.
Created executable: /targetmodel.exe
Successful completion of Real-Time Workshop build procedure for model:

targetmodel

Your working directory contains the targetmodel.exe file and the build
directory, targetmodel_mytarget_ert_rtw, which contains generated code
and other files. The working directory also contains an slproj directory,
used internally by the build process.

The code generator also creates and displays a code generation report.

8 To view the generated model code, activate the code generation report
window. In the Contents pane, click the targetmodel.c link.

9 In targetmodel.c, locate the model step function, targetmodel_step.
Observe the following code.

/* S-Function block: <Root>/S-function */
/* Multiply input by two */

Tips and Techniques for Customizing Your STF

5-47

targetmodel_B.S_Function = targetmodel_B.SineWave * 2.0;

This code verifies that the mytarget_ert_rtw target has generated a correct
inlined output computation for the S-Function block in the model.

5 System Target Files

5-48

6

Template Makefiles

Template Makefiles and Tokens (p. 6-2) Syntax of template makefile tokens; the token expansion
and makefile generation process.

The make Command (p. 6-6) How the build process invokes the make utility.

Structure of the Template Makefile
(p. 6-7)

Overview of the sections of the template makefile.

Customizing and Creating Template
Makefiles (p. 6-10)

Mechanics of setting up a template makefile; using
macros and file-pattern-matching expressions in a
template makefile; using the rtwmakecfg mechanism to
generate block-specific information in a makefile; pointer
to information on how to support model referencing.

6 Template Makefiles

6-2

Template Makefiles and Tokens
To configure or customize a template makefile (TMF), you should be familiar
with how the make command works and how it processes makefiles. You should
also understand makefile build rules. For information of these topics, refer to
the documentation provided with the make utility you use. There are also
several good books on make utilities.

TMFs are made up of statements containing tokens. The Real-Time Workshop
build process expands tokens and creates a makefile, model.mk. TMFs are
designed to generate makefiles for specific compilers on specific platforms. The
generated model.mk file is tailored to compile and link code generated from
your model, using commands specific to your development system.

Figure 6-1: Creation of model.mk

Template Makefile Tokens
The make_rtw M-file command (or a different command provided with some
targets) directs the process of generating model.mk. The make_rtw command
processes the TMF specified on the General options section of the Real-Time
Workshop tab of the Configuration Parameters dialog. make_rtw copies the
TMF, line by line, expanding each token encountered. Table 6-1 lists the tokens
and their expansions

Template
Makefile

Makefile:
model.mk

system.tmf

Template Makefiles and Tokens

6-3

.

Table 6-1: Template Makefile Tokens Expanded by make_rtw

Token Expansion

|>ALT_MATLAB_BIN<| Alternate full pathname for the
MATLAB executable; value is different
than value for MATLAB_BIN when the
full pathname contains spaces.

|>ALT_MATLAB_ROOT< | Alternate full pathname for the
MATLAB installation; value is different
than value for MATLAB_ROOT when
the full pathname contains spaces.

|>BUILDARGS<| Options passed to make_rtw. This token
is provided so that the contents of your
model.mk file changes when you change
the build arguments, thus forcing an
update of all modules when your build
options change.

|>COMPUTER<| Computer type. See the MATLAB
computer command.

|>EXT_MODE<| True (1) to enable generation of
external mode support code, otherwise
False (0).

|>EXTMODE_TRANSPORT<| Index of transport mechanism (for
example, tcpip, serial) for external
mode.

|>EXTMODE_STATIC<| True (1) if static memory allocation is
selected for external mode. False (0) if
dynamic memory allocation is selected.

|>EXTMODE_STATIC_SIZE<| Size of static memory allocation buffer
(if any) for external mode.

6 Template Makefiles

6-4

|>MAKEFILE_NAME<| model.mk — The name of the makefile
that was created from the TMF.

|>MATLAB_BIN<| Location of the MATLAB executable.

|>MATLAB_ROOT<| Path to where MATLAB is installed.

|>MEM_ALLOC<| Either RT_MALLOC or RT_STATIC.
Indicates how memory is to be allocated.

|>MEXEXT<| MEX-file extension. See the MATLAB
mexext command.

|>MODEL_MODULES<| Any additional generated source (.c)
modules. For example, you can split a
large model into two files, model.c and
model1.c. In this case, this token
expands to model1.c.

|>MODEL_MODULES_OBJ<| Object filenames (.obj) corresponding
to any additional generated source (.c)
modules.

|>MODEL_NAME<| Name of the Simulink block diagram
currently being built.

|>MULTITASKING<| True (1) if solver mode is multitasking,
otherwise False (0).

|>NCSTATES<| Number of continuous states.

|>NUMST<| Number of sample times in the model.

|>RELEASE_VERSION<| The release version of MATLAB.

|>S_FUNCTIONS<| List of noninlined S-function (.c)
sources.

|>S_FUNCTIONS_LIB<| List of S-function libraries available for
linking.

Table 6-1: Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion

Template Makefiles and Tokens

6-5

These tokens are expanded by substitution of parameter values known to the
build process. For example, if the source model contains blocks with two
different sample times, the TMF statement

NUMST = |>NUMST<|

expands to the following in model.mk.

NUMST = 2

In addition to the above, make_rtw expands tokens from other sources:

• Target-specific tokens defined in the target options of the Configuration
Parameters dialog

• Structures in the rtwoptions section of the system target file. Any
structures in the rtwoptions structure array that contain the field
makevariable are expanded.

The following example is extracted from matlabroot/rtw/c/grt/grt.tlc.
The section starting with BEGIN_RTW_OPTIONS contains M-file code that sets up
rtwoptions. The following directive causes the |>EXT_MODE<| token to be
expanded to 1 (on) or 0 (off), depending on how you set the External mode
options.

rtwoptions(2).makevariable = 'EXT_MODE'

|>S_FUNCTIONS_OBJ<| Object (.obj) file list corresponding to
noninlined S-function sources.

|>SOLVER<| Solver source filename, for example,
ode3.c.

|>SOLVER_OBJ<| Solver object (.obj) filename, for
example, ode3.obj.

|>TID01EQ<| True (1) if sampling rates of the
continuous task and the first discrete
task are equal, otherwise False (0).

Table 6-1: Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion

6 Template Makefiles

6-6

The make Command
After creating model.mk from your TMF, Real-Time Workshop invokes a make
command. To invoke make, Real-Time Workshop issues this command.

makecommand -f model.mk

makecommand is defined by the MAKE macro in your target’s TMF (see Figure 6-2
on page 6-9). You can specify additional options to make in the Make command
field of the Real-Time Workshop pane. (See the sections “Make Command”
and “Template Makefiles and Make Options” in the Real-Time workshop
documentation).

For example, specifying OPT_OPTS=-O2 in the Make command field causes
make_rtw to generate the following make command.

makecommand -f model.mk OPT_OPTS=-O2

A comment at the top of the TMF specifies the available make command
options. If these options do not provide you with enough flexibility, you can
configure your own TMF.

Make Utilities
The make utility lets you control nearly every aspect of building your real-time
program. There are several different versions of make available. Real-Time
Workshop provides the Free Software Foundation’s GNU make for both UNIX
and PC platforms in platform-specific subdirectories under

matlabroot/rtw/bin.

It is possible to use other versions of make with Real-Time Workshop, although
GNU Make is recommended. To ensure compatibility with Real-Time
Workshop, make sure that your version of make supports the following
command format.

makecommand −f model.mk

Structure of the Template Makefile

6-7

Structure of the Template Makefile
A TMF has four sections:

• The first section contains initial comments that describe what this makefile
targets.

• The second section defines macros that tell make_rtw how to process the
TMF. The macros are

- MAKECMD — This is the command used to invoke the make utility. For
example, if MAKECMD = mymake, then the make command invoked is

mymake −f model.mk
- HOST — The target platform for this TMF is targeted for. This can be
HOST=PC, UNIX, computer_name (see the MATLAB computer command), or
ANY.

- BUILD — This tells make_rtw whether or not it should invoke make from the
Real-Time Workshop build procedure. Specify BUILD=yes or no.

- SYS_TARGET_FILE — Name of the system target file or the value all. This
is used for consistency checking by make_rtw to verify that the correct
system target file was specified in the Target selection panel of the
Real-Time Workshop pane of the Configuration Parameters dialog. If
you specify all, you can use the TMF with any system target file.

- BUILD_SUCCESS — An optional macro that specifies the build success string
to be displayed on successful make completion on the PC. For example,
BUILD_SUCCESS = ### Successful creation of

The BUILD_SUCCESS macro, if used, replaces the standard build success
string found in the TMFs distributed with the bundled Real-Time
Workshop targets (such as GRT):
@echo ### Created executable $(MODEL).exe

Your TMF must include either the standard build success string, or use
the BUILD_SUCCESS macro. For an example of the use of BUILD_SUCCESS,
see
matlabroot/toolbox/rtw/c/grt/grt_bc.tmf

6 Template Makefiles

6-8

- BUILD_ERROR — An optional macro that specifies the build error message
to be displayed when an error is encountered during the make procedure.
For example,
BUILD_ERROR = ['Error while building ', modelName]

- VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS — add this
command if you want the makefile output to be displayed always
(regardless of the setting of the Verbose build option in the Real-Time
Workshop Debugging pane).

The following DOWNLOAD options apply only to the Tornado target:

- DOWNLOAD — An optional macro that you can specify as yes or no. If
specified as yes (and BUILD=yes), then make is invoked a second time with
the download target.
make -f model.mk download

- DOWNLOAD_SUCCESS — An optional macro that you can use to specify the
download success string to be used when looking for a successful
download. For example,
DOWNLOAD_SUCCESS = ### Downloaded

- DOWNLOAD_ERROR — An optional macro that you can use to specify the
download error message to be displayed when an error is encountered
during the download. For example,
DOWNLOAD_ERROR = ['Error while downloading ', modelName]

• The third section defines the tokens make_rtw expands (see Table 6-1 on
page 3).

• The fourth section contains the make rules used in building an executable
from the generated source code. The build rules are typically specific to your
version of make.

Structure of the Template Makefile

6-9

Figure 6-2 shows the general structure of a TMF.

Figure 6-2: Structure of a Template Makefile

#-- Section 1: Comments ---
#
Description of target type and version of make for which
this template makefile is intended.
Also documents any optional build arguments.
#-- Section 2: Macros read by make_rtw --
#
The following macros are read by the Real-Time Workshop build procedure:
#
MAKECMD - This is the command used to invoke the make utility.
HOST - Platform this template makefile is designed
(i.e., PC or UNIX)
BUILD - Invoke make from the Real-Time Workshop build procedure
(yes/no)?
SYS_TARGET_FILE - Name of system target file.

MAKECMD = make
HOST = UNIX
BUILD = yes
SYS_TARGET_FILE = system.tlc
#-- Section 3: Tokens expanded by make_rtw ------------------------------------
#

MODEL = |>MODEL_NAME<|
MODULES = |>MODEL_MODULES<|
MAKEFILE = |>MAKEFILE_NAME<|
MATLAB_ROOT = |>MATLAB_ROOT<|
...
COMPUTER = |>COMPUTER<|
BUILDARGS = |>BUILDARGS<|

#-- Section 4: Build rules --
#
The build rules are specific to your target and version of make.

Comments

make_rtw
macros

make_rtw
tokens

Build rules

6 Template Makefiles

6-10

Customizing and Creating Template Makefiles
This section describes the mechanics of setting up a custom TMF and
incorporating it into the build process. It also discusses techniques for
modifying a TMF and M-file mechanisms associated with the TMF.

Before creating a custom TMF, you should read Chapter 4, “Target Directories,
Paths, and Files” to understand the directory structure and MATLAB path
requirements for custom targets.

Setting Up a Template Makefile
To customize or create a new TMF, you should copy an existing GRT or ERT
TMF from one of the following locations:

matlabroot/rtw/c/grt

matlabroot/rtw/c/ert

Place the copy in the same directory as the associated system target file (STF).
Usually, this is the mytarget/mytarget directory within the target directory
structure. Then, rename your TMF appropriately (for example, mytarget.tmf)
and modify it.

To ensure that the build process locates and selects your TMF correctly, you
must provide information in the STF file header (see “System Target File
Structure” on page 5–4).

For a target that implements a single TMF, the standard way to specify the
TMF to be used in the build process is to use the TMF directive of the STF file
header.

TMF: mytarget.tmf

If your target must support multiple development environments, you can
specify an M-file script that selects the correct TMF, based on user preferences
(see Chapter 8, “Using Target Preferences”). To do this, you must

• Create the M-file script in your mytarget/mytarget directory. The naming
convention for this file is mytarget_default_tmf.m. (This naming
convention, although strongly recommended, is not required).

• Specify this M-file in the TMF directive of the STF file header.
TMF: mytarget_default_tmf

Customizing and Creating Template Makefiles

6-11

The build process then invokes your mytarget_default_tmf.m file, which then
selects the correct TMF, based on target preference settings.
“mytarget_default_tmf.m Example Code” on page 6-11 illustrates this
technique.

Another useful technique is to store a path to the user’s installed development
environment in your target preferences. You can then locate the template
makefiles under the appropriate tool directory. This allows several tool-specific
template makefiles files to be located under the specific tool directory.

mytarget_default_tmf.m Example Code. The code example below implements an M
function, mytarget_default_tmf. The function loads target preferences into
a structure from preferences data stored on disk. The code verifies that the
target preferences information is consistent with the STF name, and extracts
the associated TMF name. The TMF name is returned as the string tmf.

function [tmf,envVal] = mytarget_default_tmf
 try
 prefs = RTW.TargetPrefs.load('mytarget.prefs','structure');
 catch
 error(lasterr);
 end

 % Get the desired MYTARGET implementation and ensure it is supported
 if ~isfield(prefs, 'Implementation')
 error('MYTARGET preferences not set correctly, update Target Preferences.');
 end
 imp = deblank(lower(prefs.Implementation));
 stfname = deblank(lower(get_param(bdroot, 'RTWSystemTargetFile')));

 if ~strncmp(imp, stfname, length(stfname) - length('.tlc'))
 msg = ['System Target file name: ', stfname,
 ' does not match Implementation specified in Target Preferences: ', imp];
 error(msg);
 end

 if ~exist([imp, '_rtw_info_hook'])
 msg = ['Files for MYTARGET Implementation: ''', imp, ''' cannot be found.'];
 error(msg);
 end

 % Return the desired template make file.
 tmf = [imp, '.tmf'];

 % This argument is unused
 envVal = '';

6 Template Makefiles

6-12

Using Macros and Pattern Matching Expressions
in a Template Makefile
This section shows, through an example, how to use macros and
file-pattern-matching expressions in a TMF to generate commands in the
model.mk file.

The make utility processes the model.mk makefile and generates a set of
commands based upon dependency rules defined in model.mk. After make
generates the set of commands needed to build or rebuild test, make executes
them.

For example, to build a program called test, make must link the object files.
However, if the object files don’t exist or are out of date, make must compile the
C code. Thus there is a dependency between source and object files.

Each version of make differs slightly in its features and how rules are defined.
For example, consider a program called test that gets created from two
sources, file1.c and file2.c. Using most versions of make, the dependency
rules would be

test: file1.o file2.o
cc −o test file1.o file2.o

file1.o: file1.c
cc −c file1.c

file2.o: file2.c
cc −c file2.c

In this example, a UNIX environment is assumed. In a PC environment the file
extensions and compile and link commands are different.

In processing the first rule

test: file1.o file2.o

make sees that to build test, it needs to build file1.o and file2.o. To build
file1.o, make processes the rule

file1.o: file1.c

If file1.o doesn’t exist, or if file1.o is older than file1.c, make compiles
file1.c.

Customizing and Creating Template Makefiles

6-13

The format of Real-Time Workshop TMFs follows the above example. Our
TMFs use additional features of make such as macros and
file-pattern-matching expressions. In most versions of make, a macro is defined
with

MACRO_NAME = value

References to macros are made with $(MACRO_NAME). When make sees this form
of expression, it substitutes value for $(MACRO_NAME).

You can use pattern matching expressions to make the dependency rules more
general. For example, using GNU Make you could replace the two "file1.o:
file1.c" and "file2.o: file2.c" rules with the single rule

%.o : %.c
cc −c $<

Note that $< above is a special macro that equates to the dependency file (that
is, file1.c or file2.c). Thus, using macros and the “%” pattern matching
character, the above example can be reduced to

SRCS = file1.c file2.c
OBJS = $(SRCS:.c=.o)

test: $(OBJS)
cc −o $@ $(OBJS)

%.o : %.c
cc −c $<

Note that the $@ macro above is another special macro that equates to the name
of the current dependency target, in this case test.

This example generates the list of objects (OBJS) from the list of sources (SRCS)
by using the string substitution feature for macro expansion. It replaces the
source file extension (.c) with the object file extension (.o). This example also
generalized the build rule for the program, test, to use the special “$@” macro.

Using rtwmakecfg Files to Customize the Makefile
Real-Time Workshop TMFs provide rules and macros that let you add source
directories, include directories, and run-time library names and module objects
to generated makefiles.

6 Template Makefiles

6-14

The rtwmakecfg mechanism lets inlined S-functions add information to the
makefile. This feature is useful if you need to include your code when building
inlined S-functions, such as device driver blocks.

To add information needed for an S-function to the makefile, you must

• Create an M-function, rtwmakecfg, in a file rtwmakecfg.m. This file is
associated with your S-function by its directory location. “Creating the
rtwmakecfg.m File” below describes the requirements for the rtwmakecfg
function and the data it should return.

• Modify your target’s TMF to support macro expansion for the information
returned by the rtwmakecfg function. “Modifying the TMF” on page 6-15
describes the modifications needed.

Creating the rtwmakecfg.m File
The rtwmakecfg.m file must reside in the same directory as your S-function
component (.dll on Windows, .mex on UNIX). The rtwmakecfg function is
called during the build process. After the TLC phase of the build, when
generating a makefile from the TMF, the build process searches for an
rtwmakecfg.m file in the directory containing the S-function component. If an
rtwmakecfg.m file is found, the function is called.

The rtwmakecfg function must return a structured array with following
elements:

• makeInfo.includePath: Acell array containing additional include directory
names, which must be organized as row vector. These directory names are
expanded into include instructions in the generated makefile.

• makeInfo.sourcePath: A cell array containing additional source directory
names, which must be organized as a row vector. These directory names are
expanded into make rules in the generated makefile.

• makeInfo.library: A structure containing additional runtime library names
and module objects, which must be organized as a row vector. This
information is expanded into make rules in the generated makefile.

- makeInfo.library(n).Name: String. Specifies the name of the library
(without extension).

- makeInfo.library(n).Location: String. Directory in which the library is
located.

Customizing and Creating Template Makefiles

6-15

- makeInfo.library(n).Modules: Cell array. Specifies the C files in the
library.

Modifying the TMF
You must modify the Include Path, Additional Libraries, and Rules
sections of your target’s TMF to expand the information generated by the
rtwmakecfg function. Code excerpts are shown below. These examples may not
be appropriate for your particular make utility. You can find other examples
for numerous make environments in the ERT TMFs. The ERT TMFs are
located in matlabroot/rtw/c/ert/*.tmf.

The following example adds directory names to the include path.

ADD_INCLUDES = \
|>START_EXPAND_INCLUDES<| -I|>EXPAND_DIR_NAME<| \
|>END_EXPAND_INCLUDES<|

The ADD_INCLUDES macro must be present in the INCLUDES line, as in

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(ADD_INCLUDES) $(USER_INCLUDES)

The purpose of the following code example is to add library names to the
makefile.

LIBS =
 |>START_PRECOMP_LIBRARIES<|
 LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_PRECOMP_LIBRARIES<|
 |>START_EXPAND_LIBRARIES<|
 LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_EXPAND_LIBRARIES<|

The purpose of the following code example is to add rules to the makefile:

:|>START_EXPAND_RULES<|
 $(BLD)/%.o: |>EXPAND_DIR_NAME<|/%.c $(SRC)/$(MAKEFILE) rtw_proj.tmw

@$(BLANK)
@echo ### "|>EXPAND_DIR_NAME<|\$*.c"
$(CC) $(CFLAGS) $(APP_CFLAGS) -o (BLD)(DIRCHAR)$*.o

|>EXPAND_DIR_NAME<|$(DIRCHAR)$*.c > (BLD)(DIRCHAR)$*.lst
 |>END_EXPAND_RULES<|

|>START_EXPAND_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \
|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

6 Template Makefiles

6-16

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw
$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)
@echo ### Creating $@
$(AR) -r $@

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)
|>END_EXPAND_LIBRARIES<|

|>START_PRECOMP_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \
|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \
|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw
$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

@$(BLANK)
@echo ### Creating $@
$(AR) -r $@

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)
|>END_PRECOMP_LIBRARIES<|

Supporting Continuous Time in Custom Targets
If you want your custom ERT-based target to support continuous time, you
must update your template makefile (TMF) and the static main program
module (for example, mytarget_main.c) for your target.

Template Makefile Modifications
Add the NCSTATES token expansion after the NUMST token expansion, as follows:

NUMST = |>NUMST<|
NCSTATES = |>NCSTATES<|

In addition, add NCSTATES to the CPP_REQ_DEFINES macro, as in the following
example:

CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \
-DMAT_FILE=$(MAT_FILE)
-DINTEGER_CODE=$(INTEGER_CODE) \
-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \
-DHAVESTDIO
-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \
-DADD_MDL_NAME_TO_GLOBALS=$(ADD_MDL_NAME_TO_GLOBALS)

Customizing and Creating Template Makefiles

6-17

Modifications to Main Program Module
The main program module defines a static main function that manages task
scheduling for all supported tasking modes of single- and multiple-rate models.
NUMST (the number of sample times in the model) determines whether the main
function calls multirate or singlerate code. However, when a model uses
continuous time, it is incorrect to rely on NUMST directly.

When the model has continuous time and the flag TID01EQ is true, both
continuous time and the fastest discrete time are treated as one rate in
generated code. The code associated with the fastest discrete rate is guarded by
a major time step check. When the model has only two rates, and TID01EQ is
true, the generated code has a single-rate call interface.

To support models that have continuous time, update the static main module
to take TID01EQ into account, as follows:

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0
#define DISC_NUMST (NUMST - 1)
#else
#define DISC_NUMST NUMST
#endif

2 Replace all instances of NUMST in the file by DISC_NUMST.

Model Reference Considerations
See Chapter 7, “Supporting Model Referencing” for important information on
TMF modifications you may need to make to support the Real-Time Workshop
model referencing features.

Generating Make Commands for Nondefault
Compilers
Custom targets may need a target-specific hook file to generate an appropriate
make command when a nondefault compiler is used. This file can be used to
override the default Real-Time Workshop behavior for selecting the
appropriate compiler tool to be used in the build process.

See “STF_wrap_make_cmd_hook.m” on page 4-12 for further details.

6 Template Makefiles

6-18

7
Supporting Model
Referencing

Overview (p. 7-2) General requirements and issues for model reference
compatibility.

System Target File Modifications
(p. 7-3)

Required system target file modifications for model
reference compatibility.

Template Makefile Modifications
(p. 7-4)

Required template makefile modifications for model
reference compatibility.

Hook File Modifications (p. 7-7) How to support compilation of code generated in the
shared utilities directory (required for model referencing
support).

7 Supporting Model Referencing

7-2

Overview
This chapter describes how to adapt your custom target for code generation
compatibility with the model reference features. Most of the guidelines below
concern required modifications to your system target file (STF) and template
makefile (TMF).

Note the following general requirements and issues for model reference
compatibility:

• A model reference compatible target must be derived from the ERT or GRT
targets.

• Your target must declare model reference compatibility, as described in
“System Target File Modifications” on page 7-3.

• Your TMF must define a number of makefile tokens, variables and rules
specifically for model referencing support, as described in “Template
Makefile Modifications” on page 7-4.

• To support model reference builds, your TMF must support use of the shared
utilities directory, as described in “Hook File Modifications” on page 7-7.

• When generating code from a model that references another model, both the
top-level model and the referenced models must be configured for the same
code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it is
ignored during code generation.

System Target File Modifications

7-3

System Target File Modifications
Your target must declare model reference compatibility by setting the
ModelReferenceCompliant flag.

To do this, your STF must implement a SelectCallback function (see
“Compatibility Issues for rtwoptions Callbacks” on page 5-19). This callback is
invoked whenever the user selects a target in the System Target File browser.
Your SelectCallback function must set the ModelReferenceCompliant flag.

The callback is executed if the function is installed in the SelectCallback field
of the rtwgensettings structure in your STF. The following code installs the
SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant', 'on');

7 Supporting Model Referencing

7-4

Template Makefile Modifications
In addition to the TMF modifications described in this section, you must modify
your TMF variables and rules as described in “Hook File Modifications” on
page 7-7.

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

MODELREFS = |>MODELREFS<|
MODELLIB = |>MODELLIB<|
MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|
MODELREF_INC_PATH = |>START_MDLREFINC_EXPAND_INCLUDES<|\
 -I|>MODELREF_INC_PATH<| |>END_MDLREFINC_EXPAND_INCLUDES<|
RELATIVE_PATH_TO_ANCHOR = |>RELATIVE_PATH_TO_ANCHOR<|
MODELREF_TARGET_TYPE = |>MODELREF_TARGET_TYPE<|

The following code excerpts show how makefile tokens are expanded for a
referenced model, and for the top-level model that references it.

 Example of how tokens are expanded for a referenced model
MODELREFS =
MODELLIB = engine3200cc_rtwlib.a
MODELREF_LINK_LIBS =
MODELREF_INC_PATH =
RELATIVE_PATH_TO_ANCHOR = ../../..
MODELREF_TARGET_TYPE = RTW

 Example of how tokens are expanded for the top-level model
MODELREFS = engine3200cc transmission
MODELLIB = archlib.a
MODELREF_LINK_LIBS = engine3200cc_rtwlib.a transmission_rtwlib.a
MODELREF_INC_PATH = -I../slprj/ert/engine3200cc -I../slprj/ert/transmission
RELATIVE_PATH_TO_ANCHOR = ..
MODELREF_TARGET_TYPE = NONE

Template Makefile Modifications

7-5

The MODELREFS token for the top-level model expands to a list of referenced
model names.

The MODELLIB token expands to the name of the library generated for the
model.

The MODELREF_LINK_LIBS token for the top-level model expands to a list of
referenced model libraries that the top-level model links against.

The MODELREF_INC_PATH token for the top-level model expands to the include
path to the referenced models.

The RELATIVE_PATH_TO_ANCHOR token expands to the relative path, from the
location of the generated makefile, to the MATLAB working directory (pwd).

The MODELREF_TARGET_TYPE token signifies the type of target being built.
Possible values are

- NONE: Standalone model or top-level model referencing other model(s).

- RTW: Model reference Real-Time Workshop target build.

- SIM: Model reference simulation target build.

2 Add RELATIVE_PATH_TO_ANCHOR, MODELREF_INC_PATH, and
SHARED_INCLUDES include paths to the overall INCLUDES variable.
INCLUDES = -I. -I$(RELATIVE_PATH_TO_ANCHOR) $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

 $(USER_INCLUDES) $(MODELREF_INC_PATH)

3 Change the SRCS variable in your TMF so that it initially lists only common
modules. Further modules are then appended conditionally, as described in
step 4 below. For example, change
SRCS = $(MODEL).c $(MODULES) ert_main.c $(ADD_SRCS) $(EXT_SRC)

to

SRCS = $(MODULES) $(S_FUNCTIONS)

4 Create variables to define the final target of the makefile. You can remove
any variables that may have existed for defining the final target. For
example, remove

PROGRAM = ../$(MODEL)

7 Supporting Model Referencing

7-6

and replace it with

ifeq ($(MODELREF_TARGET_TYPE), NONE)
 # Top-level model for RTW
 PRODUCT = $(RELATIVE_PATH_TO_ANCHOR)/$(MODEL)
 BIN_SETTING = $(LD) $(LDFLAGS) -o $(PRODUCT) $(SYSLIBS)
 BUILD_PRODUCT_TYPE = "executable"
 # ERT based targets
 SRCS += $(MODEL).c ert_main.c $(EXT_SRC)
 # GRT based targets
 # SRCS += $(MODEL).c grt_main.c rt_sim.c $(EXT_SRC) $(SOLVER)

else
 # sub-model for RTW
 PRODUCT = $(MODELLIB)
 BUILD_PRODUCT_TYPE = "library"
endif

5 Create rules for final target of makefile (replace any existing final target
rule). For example:

ifeq ($(MODELREF_TARGET_TYPE),NONE)

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS) $(MODELREF_LINK_LIBS)

$(BIN_SETTING) $(LINK_OBJS) $(MODELREF_LINK_LIBS) $(SHARED_LIB) $(LIBS)
@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

else

$(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS)

@rm -f $(MODELLIB)

ar ruvs $(MODELLIB) $(LINK_OBJS)

@echo "### Created $(MODELLIB)"

@echo "### Created $(BUILD_PRODUCT_TYPE): $@"

endif

6 Create rule to allow submodels to compile files that reside in the MATLAB
working directory (pwd).
%.o : $(RELATIVE_PATH_TO_ANCHOR)/%.c

$(CC) -c $(CFLAGS) $<

Hook File Modifications

7-7

Hook File Modifications
Optional hook files let you customize the build process and communicate
information between various phases of the process. The hook files can be
M-files and TLC files that are invoked at well-defined stages of the build
process. If you are adapting your custom target for code generation
compatibility with model reference features, consider adding checks to your
hook files for handling referenced models differently than top models to
prevent resource conflicts.

For example, consider adding the following check to your
STF_make_rtw_hook.m file:

% Check if this is a referenced model
mdlRefTargetType = get_param(codeGenModelName,`ModelReferenceTargetType');
isNotModelRefTarget = strcmp(mdlRefTargetType, `NONE'); % NONE, SIM, or RTW
if isNotModelRefTarget
% code that is specific to the top-level model

else
% code that is specific to the referenced model

end

You may need to do a similar check in your TLC code.

%if !IsModelReferenceTarget()
%% code that is specific to the top-level model

%else
%% code that is specific to the referenced model

7 Supporting Model Referencing

7-8

Supporting the Shared Utilities Directory in the
Build Process

The shared utilities directory (slprj/target/_sharedutils) typically stores
generated utility code that is common between a top-level model and the
models it references. You can also force the build process to use a shared
utilities directory for a standalone model. See “Project Directory Structure for
Model Reference Targets” in the Real-Time Workshop documentation for
details.

If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Note that support for the shared utilities directory is a necessary, but
not sufficient, condition for supporting Model Reference builds. See the
preceding sections of this chapter to learn about additional updates that are
needed for supporting Model Reference builds.

The exact syntax of the changes can vary due to differences in the make utility
and compiler/archiver tools used by your target. The examples below are based
on the GNU make utility. You can find the following updated TMF examples
for GNU and Microsoft Visual C make utilities in the GRT and ERT target
directories:

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

Supporting the Shared Utilities Directory in the Build Process

7-9

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and Model Reference simulation targets. Your target does not
need to handle these cases.

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source files
in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as in the
following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the sourcefiles.
In the current release, all TMFs actually use the same path, as in the following
expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities are
in use. Then append it to the overall INCLUDES variable.
SHARED_INCLUDES =
ifneq ($(SHARED_SRC_DIR),)
SHARED_INCLUDES = -I$(SHARED_SRC_DIR)
endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \
 $(USER_INCLUDES) $(SHARED_INCLUDES)

7 Supporting Model Referencing

7-10

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.
$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c

$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following
example is Unix-based.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.
$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS)
$(SHARED_LIB) $(SYSLIBS)

@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c from your TMF. For
example. change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Supporting the Shared Utilities Directory in the Build Process

7-11

Note If your target interfaces to a development environment that is not
makefile based, you must make equivalent changes to provide the needed
information to your target compilation environment.

7 Supporting Model Referencing

7-12

8
Using Target Preferences

Introduction to Target Preferences
(p. 8-2)

What to read first; overview of the target preferences
feature.

Creating Your Target Preferences
Class (p. 8-4)

How to define your target preferences class using the
Simulink Data Class Designer.

Target Preferences Class Methods
(p. 8-9)

Summary of methods inherited by target preferences
classes.

Making Target Preferences Available
to the End User (p. 8-11)

Giving your users access to user-settable target
preferences properties.

Using Target Preferences in the Build
Process (p. 8-13)

How to access and use target preferences data from TLC
and from MATLAB.

8 Using Target Preferences

8-2

Introduction to Target Preferences
The target preferences mechanism discussed in this section is based on
Simulink data classes and data objects. This document assumes that you are
familiar with Simulink data classes, packages, and objects, and with the use of
the Simulink Data Class Designer.

If you are not familiar with these topics, read the “Working with Data Objects”
section of the Simulink documentation.

Target Preferences Classes, Objects, and Properties
Target developers have found that it is often desirable to associate certain
types of data with the target. For example, an embedded target may offer users
a choice of several supported development systems (cross-compilers,
debuggers, and so on). To invoke the correct development tool during the build
process, the target needs information such as the user’s choice of development
tool, and the location on the host system where the user has installed the
compiler and debugger executables. Other data associated with a target might
specify host/target communications parameters, such as the communications
port and baud rate to be used.

Target developers need a mechanism to define and store the properties they
want to associate with their target. End users need a simple mechanism to set
target property values. The target preferences feature meets these needs.
Target preferences let you

• Structure the data associated with your target.

• Store data associated with your target persistently, across multiple models
and across multiple MATLAB sessions.

• Provide end users with a simple GUI for changing, saving and loading their
preferences. The target preferences feature also lets users perform the same
functions from the MATLAB command line, or in M-files, with a simple set
of commands.

To structure the data associated with your target, you define a target
preferences class by specifying target properties and property types. The
Simulink Data Class Designer simplifies this task.

Introduction to Target Preferences

8-3

Your target preferences class inherits methods from a base class
(RTW.TargetPrefs) provided by the Real-Time Workshop Embedded Coder.
Inherited methods let you do the following with minimal effort:

• Manage persistent storage of preference data. The target preferences class
stores such information to a MAT-file that can be easily retrieved, edited,
and stored once again.

• Present a Property Inspector window to the end user, allowing for easy
editing of preference property values.

You can also access target preferences through M-file utilities (for an example,
see “Using Target Preferences in the Build Process” on page 8-13).You can use
target preferences data during the build process by invoking such utilities from
your TLC code. You can use the preference information in makefiles to invoke
the user’s preferred compiler or perform other target-specific tasks.

8 Using Target Preferences

8-4

Creating Your Target Preferences Class
This section demonstrates the creation of a simple target preferences class
using the Simulink Data Class Designer, and summarizes the methods
inherited by this class.

This example assumes the skeletal target directory structure (as described in
“Target Directory Structure and MATLAB Path” on page 4–4) has been created
for an embedded target called z80.

The following naming convention is recommended for target preferences
classes and packages:

• The package name should be in the form
targetname

where targetname is the name of the target.

• The recommended class name is prefs.

Thus the recommended package.class naming convention is

targetname.prefs.

In this example, you define target preferences for a hypothetical embedded
target for the Z80 microprocessor. The example defines a containing package
z80, and a class prefs. The prefs class is a subclass of the RTW.TargetPrefs
base class. The z80 package is stored in the directory z80\z80\@z80.

To create the package and class,

1 Set your working directory to a directory that is not located anywhere in the
MATLAB directory tree (that is, in or under the matlabroot directory). By
the convention described in “Target Directory Structure and MATLAB Path”
on page 4-4, enter

cd z80\z80

2 Open the Simulink Data Class Designer by typing the following command
at the MATLAB prompt.

sldataclassdesigner('Create', 'ShowRTWTargetPrefs')

3 To define the package, click the New button next to the Package name field
of the Data Class Designer. Enter the package name, z80.

Creating Your Target Preferences Class

8-5

4 Click OK to create the new package in memory.

5 In the package Parent directory field, enter the path of the directory where
you want Simulink to create the new package.

Note that Simulink creates the specified directory, if it does not already
exist, when you save the package to your file system.

6 To define the target preferences class, click the New button on the Classes
pane of the Data Class Designer dialog. Enter the name of the new class,
prefs, in the Class name field on the Classes pane.

7 Click OK to create the new class in memory.

8 Select RTW.TargetPrefs as the parent class for the new class. To do this,
first select the package name RTW from the left Derived from list box. Then,
select the class name TargetPrefs from the right Derived from list box.

At this point, the Data Class Designer dialog resembles Figure 8-1 below.
Note that the list of properties in the Properties of this class field is empty.
This is because the RTW.TargetPrefs parent class provides only methods,
not properties.

8 Using Target Preferences

8-6

Figure 8-1: Package and Class Definitions for z80.prefs
Target Preferences Class

9 Populate the list of properties by entering several property names and
assigning data types and factory (default) values to them. (see “Defining
Class Properties” in the Simulink documentation.) Figure 8-2 below shows
the Properties of this class field with two sample properties defined.

Creating Your Target Preferences Class

8-7

Figure 8-2: Property Definitions for z80.prefs
Target Preferences Class

10 Click Confirm changes. Simulink displays the Confirm changes pane (not
shown).

11 Select the package containing the new class definition and click Write
Selected to save the new class definition.

8 Using Target Preferences

8-8

The directory z80\z80 now contains the package subdirectory,\@z80. The
package subdirectory contains the class subdirectory, @prefs.

Note Due to a Data Class Designer bug in the current release, you must
enter embedded backslashes in string property values as double backslashes
('\\'). If you use single backslashes ('\') errors may result. For example, in
Figure 8-2, the default value for CompilerPath is entered as
D:\\Applications\\AZ80CrossCompiler\\bin. MATLAB correctly parses the
extra backslashes as escape sequences; therefore, pathnames are returned
correctly from your target preferences objects.

Target Preferences Class Methods

8-9

Target Preferences Class Methods
This section describes the methods that your target preferences class inherits
from RTW.TargetPrefs.

To invoke these methods, instantiate an object of your target preferences class
and use the syntax

method(objectname)

Note that to instantiate the target preferences object, you must use a static
method, load, of the parent class RTW.TargetPrefs. For example:

z = RTW.TargetPrefs.load('z80.prefs');
disp(z)
 CompilerName: 'AZ80CrossCompiler'
 CompilerPath: 'D:\Applications\AZ80CrossCompiler\bin'

The inherited methods are summarized in this table.

Table 8-1: Inherited Target Preferences Class Methods

Method Description

disp Display the current property values of an object of the
target preferences class in the MATLAB Command
Window.

reset Reset the current property values of an object of the
target preferences class to the default (factory) values.

getclassname Return the name of the class as a string.

gui Using an existing object of the target preferences class,
load the current property values in memory, and
display a Target Preferences Setup window.
Figure 8-3 shows an example of such a window.

8 Using Target Preferences

8-10

load('package.class'[,
'structure]')

load is a static method of the parent class. Load the
stored property values into an object of the package and
class specified by the first argument. If the second
argument is present, the return type is structure
instead of object.

save Write out the current property values of an object of the
target preferences class.

Table 8-1: Inherited Target Preferences Class Methods (Continued)

Method Description

Making Target Preferences Available to the End User

8-11

Making Target Preferences Available to the End User
End users of your target will not normally need to invoke the methods
described in “Target Preferences Class Methods” on page 8-9 (with the possible
exception of the gui method). They only need to know how to open the Target
Preferences Setup window to set the target properties.

The Target Preferences Setup window (Figure 8-3) allows the user to

• View and edit the property values.

• Save the property values.

• Reset the property values to their default (factory) values.

• Cancel the edit session.

Figure 8-3: Target Preferences Setup Window

The simplest way for users to access the Target Preferences Setup window is
to invoke the gui method. This does not require you to provide any additional
code.

A better approach, from the standpoint of usability, is to let the user open the
the Target Preferences Setup window from an icon under your target’s
toolbox in the MATLAB Start button. To make your target visible in the Start
button, you must provide an info.xml file in the mytarget/mytarget directory
(see “info.xml” on page 4-15).

To open the Target Preferences Setup window from the Start button, your
info.xml file should also contain a section similar to the following example.
This code provides a callback that executes when the user clicks on a standard
icon in the Start button. The callback instantiates a z80 target preferences
object and calls the gui method of that object.

8 Using Target Preferences

8-12

<listitem>
<label>Z80 Target Preferences</label>
<callback>z80TargetPrefs = RTW.TargetPrefs.load('z80.prefs');
gui(z80TargetPrefs); </callback>
<icon>$toolbox/simulink/simulink/simulinkicon.gif</icon>
</listitem>

Only the text shown above in bold should be modified.

Once you have added the preceding section to your info.xml file, your
customized target preferences appear in the Start button menu.

Note It is your responsibility to document the user-settable properties of
your target. You should also document how users should access your target’s
preferences.

Using Target Preferences in the Build Process

8-13

Using Target Preferences in the Build Process
This section discusses how to access your target preference data for use in the
build process. “Accessing Target Preference Data from MATLAB” in Chapter 8
illustrates two ways to access your target preference data in M code. The
second section, “Accessing Target Preference Data from TLC” on page 8-13,
describes how to return target preference data to a TLC variable.

Accessing Target Preference Data from MATLAB
Accessing target preference data from MATLAB or from an M-file is simpler
than obtaining the same data in TLC. The following code instantiates a z80
target preferences object in the MATLAB workspace, and loads the saved
preferences data into the object. The CompilerName property is then directly
accessed and assigned to a variable.

tp = RTW.TargetPrefs.load('z80.prefs');
targetName = tp.CompilerName;

The next section illustrates how to use the load method to return target
preferences information to a TLC program.

Accessing Target Preference Data from TLC
You should create a mytarget_settings.tlc file to obtain target preferences
data for use in the build process. The mytarget_settings.tlc file is invoked
during the build process by a %include statement in the system target file. The
mytarget_settings.tlc file is also useful for checking user code generation
option settings, and other global settings affecting the code generation/build
process.

As an example, consider the preferences for the z80 target defined in “Using
Target Preferences in the Build Process” on page 8-13. A package/class
z80.prefs is defined with properties CompilerName and CompilerPath, as
shown in Figure 8-2.

The following TLC code examples from z80_settings.tlc show how to obtain
the property values from the z80 target preferences and add them to the
CompiledModel structure used in the build process.

This example performs a MATLAB evaluation of the load method (see previous
section) that returns the property values to an intermediate TLC variable.

8 Using Target Preferences

8-14

%assign Z80PREFS = FEVAL("RTW.TargetPrefs.load","z80.prefs","structure")

The next example creates a structure (Settings) for the property values within
the CompiledModel record and populates the fields in
CompiledModel.Settings with the data from the z80 target preferences.

%addtorecord CompiledModel Settings Z80PREFS;

CompiledModel.Settings can now be used as required by subsequently
executing TLC code.

Now, consider an example where the target property values could be used in
the build process. Suppose that a requirement for the Z80 target is to support
two compilers. The decision as to which compiler is to be invoked during the
build process is based on the CompilerName property, as set by the user.

The default value of CompilerName is 'AZ80CrossCompiler'. The
AZ80CrossCompiler compiler tool chain is well suited for use with makefiles. If
this compiler is specified, it is invoked using gmake and a template makefile, as
is the case with most compilers invoked by Real-Time Workshop targets.
Normally, a template makefile uses the variable CPP_REQ_DEFINES to contain a
list of all the arguments specific to settings made to the model.

The alternative supported compiler, CodeSamurai, uses project files and COM
automation, rather than a template makefile. If this compiler is specified, a
different action should be taken to create a list of model settings and a list of
files to be included in the project file. The example code below invokes two TLC
utilities (not shown) to generate a special header file (cpp_req_defines.h) and
a list of files.

%if CompiledModel.Settings.CompilerName == "CodeSamurai"
%%
%% Generate cpp_req_defines.h and the list of RTW files resulting
%%from code generation.
%%
%include "gen_cpp_req_defines_h.tlc"
%include "gen_rtw_file_list.tlc"
%%
%else
 ... do something else for the the AZ80CrossCompiler compiler
%endif

Using Target Preferences in the Build Process

8-15

Note that this code does not do any validation of the CompilerName setting. A
more rigorous approach would be to define CompilerName as an enumerated
type taking only two values. This would limit the user to a choice of two
compiler names and avoid typing errors. Other validation could be done using
the CompilerPath property. For example, the CompilerPath information could
be used to access files located in the directories of the specified compiler, to
detect that the proper compiler (or a specific required version of the compiler)
was installed.

8 Using Target Preferences

8-16

9
Interfacing to
Development Tools

Introduction (p. 9-2) Overview of problems encountered in interfacing the
build process to development tools, and of approaches to
solving these problems.

The Makefile Approach (p. 9-3) Summary of traditional approach using makefiles and
make utilities.

Interfacing to an Integrated
Development Environment (p. 9-4)

Examples of use of COM automation and project file
generation to drive non-makefile based development
environments.

9 Interfacing to Development Tools

9-2

Introduction
Unless you are developing a target purely for code generation purposes, you
will want your embedded target to support a complete build process. A full
post-code generation build process includes

• Compilation of generated code

• Linking of compiled code and runtime libraries into an executable program
module (or some intermediate representation of the executable code, such as
S-Rec format)

• Downloading the executable to target hardware with a debugger or other
utility

• Initiating execution of the downloaded program

Supporting a complete build process is inherently a complex task, because it
involves interfacing to cross-development tools and utilities that are external
to Real-Time Workshop.

If your development tools can be controlled with traditional makefiles and a
make utility such as gmake, it may be relatively simple for you to adapt existing
target files (such as the ert.tlc and ert.tmf files provided by the Real-Time
Workshop Embedded Coder) to your requirements. This approach is discussed
in “The Makefile Approach” on page 9-3.

Automating your build process through a modern integrated development
environment (IDE) presents a different set of challenges. Each IDE has its own
way of representing the set of source files and libraries for a project and for
specifying build arguments. Interfacing to an IDE may require generation of
specialized file formats required by the IDE (for example, project files) and, and
also may require the use of inter-application communication (IAC) techniques
to run the IDE. One such approach to build automation is discussed in
“Interfacing to an Integrated Development Environment” on page 9-4.

The Makefile Approach

9-3

The Makefile Approach
A template makefile provides information about your model and your
development system. Real-Time Workshop uses this information to create an
appropriate makefile (.mk file) to build an executable program. The Real-Time
Workshop Embedded Coder provides a number of template makefiles suitable
for host-based compilers such as LCC (ert_lcc.tmf) and Visual C++
(ert_vc.tmf).

Adapting one of the existing template makefiles to your cross-compiler’s make
utility may require little more than copying and renaming the template
makefile in accordance with the conventions of your project.

If you need to make more extensive modifications, you need to understand
template makefiles in detail. For a detailed description of the structure of
template makefiles and of the tokens used in template makefiles, see Chapter
6, “Template Makefiles.”

The following sections of this document supplement the basic template
makefile information in the Real-Time Workshop documentation:

• “Supporting Multiple Development Environments” on page 5-33

• “Supplying Development Environment Information to Your Template
Makefile” on page 3-17

• “mytarget_default_tmf.m” on page 4-11

9 Interfacing to Development Tools

9-4

Interfacing to an Integrated Development Environment
This section describes techniques that have been used to integrate embedded
targets with integrated development environment (IDEs):

• “Generating a CPP_REQ_DEFINES Header File” on page 9-4 describes how
to generate a header file containing directives to define variables (and their
values) required by a non-makefile based build.

• “Interfacing to the CodeWarrior IDE” on page 9-5 describes some problems
and solutions specific to interfacing embedded targets with the MetroWerks
CodeWarrior IDE. The examples provided in this section should help you to
deal with similar interfacing problems with your particular IDE.

Generating a CPP_REQ_DEFINES Header File
In Real-Time Workshop template makefiles, the token CPP_REQ_DEFINES is
expanded and replaced with a list of parameter settings entered with various
dialogs. This variable often contains information such as MODEL (name of
generating model), NUMST (number of sample times in the model), MT (model is
multi-tasking or not), and numerous other parameters (see “Template
Makefiles and Tokens” on page 6-2).

The makefile mechanism provided with Real-Time Workshop handles the
CPP_REQ_DEFINES token automatically. If your target requires use of a project
file, rather than the traditional makefile approach, you can generate a header
file containing directives to define these variables and provide their values.

The following TLC file, gen_rtw_req_defines.tlc, provides an example. The
code generates a C header file, cpp_req_defines.h. The information required
to generate each #define directive is derived either from information in the
model.rtw file (for example, CompiledModel.NumSynchronousSampleTimes), or
from make variables from the rtwoptions structure (for example,
PurelyIntegerCode).

%% File: gen_rtw_req_defines_h.tlc
%openfile CPP_DEFINES = "cpp_req_defines.h"
#ifndef _CPP_REQ_DEFINES_
#define _CPP_REQ_DEFINES_
#define MODEL %<CompiledModel.Name>
#define ERT 1
#define NUMST %<CompiledModel.NumSynchronousSampleTimes>

Interfacing to an Integrated Development Environment

9-5

#define TID01EQ %<CompiledModel.FixedStepOpts.TID01EQ>
%%
%if CompiledModel.FixedStepOpts.SolverMode == "MultiTasking"
#define MT 1
#define MULTITASKING 1
%else
#define MT 0
#define MULTITASKING 0
%endif
%%
#define MAT_FILE 0
#define INTEGER_CODE %<PurelyIntegerCode>
#define ONESTEPFCN %<CombineOutputUpdateFcns>
#define TERMFCN %<IncludeMdlTerminateFcn>
%%
#define MULTI_INSTANCE_CODE 0
#define HAVESTDIO 0
#endif
%closefile CPP_DEFINES

Interfacing to the CodeWarrior IDE
Interfacing an embedded target’s build process to the CodeWarrior IDE
requires that two problems must be dealt with:

• The build process must generate a CodeWarrior compatible project file. This
problem, and a solution, is discussed in “XML Project Import” on page 9-5.
The solution described is applicable to any ASCII project file format.

• During code generation, the target must automate a CodeWarrior session
that opens a project file and builds an executable. This task is described in
“Build Process Automation” on page 9-9. The solution described is applicable
to any IDE that can be controlled with Windows Component Object Model
(COM) automation.

XML Project Import
This section illustrates how to use the Target Language Compiler (TLC) to
generate an eXtensible Markup Language (XML) file, suitable for import into
CodeWarrior, that contains all the necessary information about the source code
generated by an embedded target.

9 Interfacing to Development Tools

9-6

The choice of XML format is dictated by the fact that CodeWarrior supports
project export and import with XML files. As of this writing, native
CodeWarrior project files are in a proprietary binary format.

Note that if your target needs to support some other compiler’s project file
format, you can apply the techniques shown here to virtually any ASCII file
format (see “Generating a CPP_REQ_DEFINES Header File” on page 9-4).

To illustrate the basic concept, consider a hypothetical XML file exported from
a CodeWarrior stationery project. The following is a partial listing:

<target>
<settings>

<\settings>
<file><name>foo.c<\name>
<\file>

<file><name>foobar.c<\name>
<\file>
<fileref><name>foo.c<\name>
<\fileref>

<fileref><name>foobar.c<\name>
<\fileref>

<\target>

Insert this XML code into an %openfile/%closefile block within a TLC file,
test.tlc, as shown below.

%% test.tlc
%% This code will generate a file model_project.xml,
%% where model is the generating model name specified in
%% the CompiledModel.Name field of the model.rtw file.
%openfile XMLFileContents = %<CompiledModel.Name>_project.xml
<target>

<settings>

<\settings>
<file><name>%<CompiledModel.Name>.c<\name>
<\file>

Interfacing to an Integrated Development Environment

9-7

<file><name>foobar.c<\name>
<\file>
<fileref><name>%<CompiledModel.Name>.c<\name>
<\fileref>

<fileref><name>foobar.c<\name>
<\fileref>

<\target>
%closefile XMLFileContents
%selectfile NULL_FILE

Note the use of the TLC token CompiledModel.Name. The token is resolved and
the resulting file name is included in the output stream. You can specify other
information, such as paths and libraries, in the output stream by specifying
other tokens defined in model.rtw. For example, System.Name may be defined
as <Root>/Susbsystem1.

Now suppose that test.tlc is invoked during a target’s build process, where
the generating model is mymodel.mdl. This should be done after the
codegenentry statement. For example, test.tlc could be included directly in
the system target file:

%include "codegenentry.tlc"
%include "test.tlc"

Alternatively, the %include "test.tlc" directive could be inserted into the
mytarget_genfiles.tlc hook file, if present.

TLC tokens such as

<file><name>%<CompiledModel.Name>.c<\name>

are expanded, with the CompiledModel record in the mymodel.rtw file, as in

<file><name>mymodel.c<\name>

test.tlc generate an XML file, file model_project.xml, from any model.
model_project.xml contain references to generated code files.
model_project.xml can be imported into CodeWarrior as a project.

The following flowchart summarizes this process.

9 Interfacing to Development Tools

9-8

proj.mcp: CodeWarrior
project binary stationery file

proj.xml: XML project file

CodeWarrior (manual): Export to XML.

Text editor (manual): Add TLC tokens to
generate references model files, MATLAB
and other paths, and other settings. Embed t
XML code marked with topkens in
openfile/closefile block. Save as
proj_gen.tlc.

proj_gen.tlc: TLC file for
generating XML file

Model_project.xml:
Generated XML project file
file with generated file
references and target-specific
information

TLC: During code generation, expand TLC
tokens and generate XML project file,
Model_project.xml.

CodeWarrior (manual or with script): Import
from XML.

CodeWarrior (manual or with script): Build
project as indicated in “Build Process
Automation” on page 9-9.

Model_project.mcp:
CodeWarrior project binary
file

Interfacing to an Integrated Development Environment

9-9

Note This process has drawbacks. First, manually editing an XML file
exported from a CodeWarrior stationery project can be a laborious task,
involving modification of a few dozen lines embedded within several thousand
lines of XML code. Second, if you make changes to the CodeWarrior project
after importing the generated XML file, the XML file must be exported and
manually edited once again.

Build Process Automation
An application that supports COM automation can control any other
application that includes a COM interface. Using MATLAB COM automation
functions, an M-file can command a COM-compatible development system to
execute tasks required by the build process.

The MATLAB COM automation functions described in this section are
documented in the “COM and DDE Support” section of the “External
Interfaces/API” section of the MATLAB documentation.

For information about automation commands supported by CodeWarrior, see
your CodeWarrior documentation.

COM automation is used by some embedded targets (for example, the
Embedded Target for Motorola MPC555) to automate the Metrowerks
CodeWarrior IDE to execute tasks such as:

• Opening a new CodeWarrior session

• Configure a project

• Loading a CodeWarrior project file

• Removing object code from the project

• Building or rebuilding the project

• Debug an application

COM technology automates certain repetitive tasks and allows the user to
interact directly with the external application. For example, when the end user
of the Embedded Target for Motorola MPC555 initiates a build, the target
quickly invokes the necessary CodeWarrior actions and leaves a project built
and ready to run with the IDE.

9 Interfacing to Development Tools

9-10

Example COM Automation Functions. The functions below use the MATLAB
actxserver command to invoke COM functions for controlling CodeWarrior
from a MATLAB M-file:

• CreateCWComObject: Create a COM connection to CodeWarrior.

• OpenCW: Open CodeWarrior without opening a project.

• OpenMCP: Open the CodeWarrior project file (.mcp file) specified by the input
argument.

• BuildCW: Open the specified .mcp file, remove object code, and build project.

These functions are examples; they do not constitute a full implementation of
a COM automation interface. If your target creates the project file during code
generation, the top-level BuildCW function should be called after the code
generation process is completed. Normally BuildCW would be called from the
exit method of your STF_make_rtw_hook.m file (see “STF_make_rtw_hook.m”
on page 4-12).

In the code examples, the variable in_qualifiedMCP is assumed to store a fully
qualified path to a CodeWarrior project file (for example, path, filename, and
extension). For example:

in_qualifiedMCP = 'd:\work\myproject.mcp';

In actual practice, your code is responsible for determining the conventions
used for the project file name and location. One simple convention would be to
default to a project file model.mcp, located in your target’s build directory.
Another approach would be to let the user specify the location of project files
with the target preferences.

Interfacing to an Integrated Development Environment

9-11

%==
% Function: CreateCWComObject
% Abstract: Creates the COM connection to CodeWarrior
%
function ICodeWarriorApp = CreateCWComObject
 vprint([mfilename ': creating CW com object']);
 try
 ICodeWarriorApp = actxserver('CodeWarrior.CodeWarriorApp');
 catch
 error(['Error creating COM connection to ' ComObj ...
 '. Verify that CodeWarrior is installed correctly. Verify COM access to
CodeWarrior outside of MATLAB.']);
 end
 return;

%==
% Function: OpenCW
% Abstract: Opens CodeWarrior without opening a project. Returns the
% handle ICodeWarriorApp.
%
function ICodeWarriorApp = OpenCW()
 ICodeWarriorApp = CreateCWComObject;
 CloseAll;
 OpenMCP(in_qualifiedMCP);

%===
% Function: OpenMCP
% Abstract: open an MCP project file
%
function OpenMCP(in_qualifiedMCP)
 % Argument checking. This method requires valid project file.
 if ~exist(in_qualifiedMCP)
 error([mfilename ': Missing or empty project file argument']);
 end
 if isempty(in_qualifiedMCP)
 error([mfilename ': Missing or empty project file argument']);
 end
 ICodeWarriorApp = CreateCWComObject;
 vprint([mfilename ': Importing']);
 try
 ICodeWarriorProject = ...
 invoke(ICodeWarriorApp.Application,...
 'OpenProject', in_qualifiedMCP,...
 1,0,0);
 catch
 error(['Error using COM connection to import project. ' ...
 ' Verify that CodeWarrior is installed correctly. Verify COM access to
CodeWarrior outside of MATLAB.']);
 end

9 Interfacing to Development Tools

9-12

%===
% Function: BuildCW
% Abstract: Opens CodeWarrior.
% Opens the specified CodeWarrior project.
% Deletes objects.
% Builds.
%
function ICodeWarriorApp = BuildCW(in_qualifiedMCP)
 % ICodeWarriorApp = BuildCW;
 ICodeWarriorApp = CreateCWComObject;
 CloseAll;
 OpenMCP(in_qualifiedMCP);
 try
 invoke(ICodeWarriorApp.DefaultProject,'RemoveObjectCode', 0, 1);
 catch
 error(['Error using COM connection to remove objects of current project. ' ...
 'Verify that CodeWarrior is installed correctly. Verify COM access to
CodeWarrior outside of MATLAB.']);
 end
 try
 invoke(ICodeWarriorApp.DefaultProject,'BuildAndWaitToComplete');
 catch
 error(['Error using COM connection to build current project. ' ...
 'Verify that CodeWarrior is installed correctly. Verify COM access to
CodeWarrior outside of MATLAB.']);
 end

10
Developing Device Drivers
for
Embedded Targets

Introduction (p. 10-2) Topical summary, pointers to related documentation, and
discussion of tradeoffs in device driver development
techniques.

Writing a Device Driver C-MEX
S-Function (p. 10-6)

How to write a C MEX-file simulation driver block in
compliance with the S-function API.

Creating a User Interface for Your
Driver (p. 10-16)

How to create a mask for your simulation driver block;
how to obtain and use block parameter values from the
user interface.

Building the MEX-File and the Driver
Block (p. 10-22)

Mechanics of building the C MEX-file for your driver and
binding it to an S-Function block.

Inlining the S-Function Device Driver
(p. 10-23)

Creating a TLC implementation of your driver block
generating code from your driver.

Creating Device Drivers with the
S-Function Builder (p. 10-30)

Procedures for generating basic device drivers with the
Simulink S-Function Builder, and for customizing the
generated drivers.

Device Drivers in Simulation (p. 10-41) Multiple-model and single-model approaches to using
device driver blocks in simulation.

10 Developing Device Drivers for Embedded Targets

10-2

Introduction
Device drivers that communicate with target hardware are essential to many
real-time development projects. This chapter discusses issues and solutions in
the creation of device drivers specifically for embedded targets. This process
includes incorporating drivers into your Simulink model and into the code
generated from that model.

This chapter describes techniques for implementing device drivers as fully
inlined S-functions. Like other inlined S-functions, fully inlined device drivers
have a dual implementation:

• A C MEX S-function is implemented, primarily for use in simulation.

• A TLC implementation is created for use in code generation.

This chapter does not discuss the implementation of noninlined device drivers
in detail. Although the Real-Time Workshop Embedded Coder supports
noninlined S-functions, you should use inlined device drivers for embedded
applications, for reasons of efficiency. See “Inlined vs. Noninlined Drivers” on
page 10-3 for a discussion of the tradeoffs.

Related Documentation
To implement device drivers, you should be familiar with the Simulink C MEX
S-function format and API, and with the Target Language Compiler (TLC).
These topics are covered in the following documents:

• The Writing S-Functions document describes C MEX S-functions and the
S-function API in general. The Writing S-Functions document also describes
how to access parameters from a masked S-function.

• The “Writing S-Functions for Real-Time Workshop” chapter of the Real-Time
Workshop documentation is particularly important. It describes inlining,
and how to use the special mdlRTW function to parameterize an inlined
S-function.

• “Using Masks to Customize Blocks” in the Using Simulink document
describes how to create a mask for an S-function.

• The “External Interfaces/API” section in the MATLAB documentation
explains how to write C and other programs that interact with MATLAB
with the MEX API. The Simulink S-function API is built on top of this API.
To pass parameters to your device driver block from MATLAB and/or

Introduction

10-3

Simulink, you must use the MEX API. “External Interfaces/API Reference”
in the MATLAB online documentation contains reference descriptions for
the required MATLAB mx* routines.

• The Target Language Compiler documentation describes how to customize
code generation for blocks and targets. Knowledge of the Target Language
Compiler is required in order to inline S-functions. The Target Language
Compiler documentation also describes the structure of the model.rtw file.

Tradeoffs in Device Driver Development

Hand Coding vs. S-Function Builder
Part of the task of device driver creation is to create a C MEX-file, primarily for
use in simulation. Traditionally, C MEX-files are written manually, often using
S-function template provided by Real-Time Workshop as a starting point. Most
of this chapter is concerned with manually written device driver code.

If you have little experience in writing S-functions, you can simplify the process
of implementing your C MEX-file by using the Simulink S-Function Builder.
This alternative is described in “Creating Device Drivers with the S-Function
Builder” on page 10-30.

Note that use of the S-Function Builder does not completely eliminate the need
to write code. You must still write TLC code to generate inlined code from your
driver. Furthermore, the S-Function Builder only imports a subset of the
S-Function API. Consequently, it may be necessary to modify the C MEX-files
created by the S-Function Builder.

Inlined vs. Noninlined Drivers
You can use inlined or non-inlined S-functions with the Real-Time Workshop
Embedded Coder. A benefit of non-inlined S-functions is that you do not have
to write TLC code. However, for embedded systems development, fully inlined
device drivers have numerous advantages. Inlined device drivers are an
appropriate design choice when:

• You need production code generated from the S-function to behave
differently than code used during simulation. This is almost always the case
when developing device drivers. For example, an output device block may
write to a hard device address in generated code, but during simulation, this

10 Developing Device Drivers for Embedded Targets

10-4

address may be illegal. The driver should therefore perform no output during
simulation.

This dual behavior can be achieved in a noninlined S-function, but only by
use of awkward compiler conditionals.

• You want to avoid overhead associated with calling the S-function API.

• You want to avoid writing stub routines (to satisfy the S-function API) that
have no purpose in your generated code.

• You want to reduce memory usage. Note that each noninlined S-function
creates its own Simstruct. Each Simstruct uses over 1K of memory. Inlined
S-functions do not allocate any Simstruct.

• You want to take advantage of the mdlRTW function. Implementing a mdlRTW
function gives you maximum flexibility in communicating parameter data
from the model to the model.rtw file during code generation. The mdlRTW
mechanism is only available to inlined S-functions.

In device driver development, achieving minimal memory usage and maximum
code performance are usually the most important considerations. From this
standpoint, there are no compelling reasons for creating noninlined drivers.

An Example Device Driver
This section provides an example of a manually written and fully inlined input
device driver, ADC_examp, to accompany the discussions below. This driver
supports the analog-to-digital converter (ADC) device on the Motorola HC12
microcontroller. A complete driver implementation is available in the directory

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

The driver files include

• ADC_examp.c: Source code for simulation driver S-function

• ADC_examp.dll: C-MEX file (for Windows platform) built from ADC_examp.c

• ADC_examp.tlc: TLC implementation for inlined code generation

• ADC_library.mdl: Simulink library containing masked S-function driver
block for use in simulation

• ADC_examp_model.mdl: Simple example model that uses the block. This
model is configured for ERT code generation only.

Introduction

10-5

ADC_examp is a simplified version of the ADC Input block provided by the
Embedded Target for Motorola HC12. If you have licensed and installed the
Embedded Target for Motorola HC12 and the required compiler and
development boards, you can use this driver in simulation and generate,
download, and run an executable with inlined driver code.

If you do not have the Embedded Target for Motorola HC12, you can use the
ADC_examp driver in simulation and generate code only, using the ERT target.

10 Developing Device Drivers for Embedded Targets

10-6

Writing a Device Driver C-MEX S-Function
This discussion assumes that you are implementing a driver as a fully inlined
S-function. For use in simulation, you must provide a C-MEX S-function. Since
this S-function is used only in simulation, it is relatively simple to implement.
The S-function may contain functions that:

• Initialize the SimStruct.

• Display information in the MATLAB window during simulation.

• Validate block parameter data input by the user.

• Implement a mdlRTW function for passing data to the model.rtw file.

You should use the S-function template provided by Real-Time Workshop as a
starting point for developing your simulation driver S-function. The template
file is

matlabroot/simulink/src/sfuntmpl_basic.c

An extensively commented version of the S-function template is also available.
See matlabroot/simulink/src/sfuntmpl_doc.c.

Alternatively, you can use the ADC_examp driver (see “An Example Device
Driver” on page 10-4) as a starting point for your driver.

Your S-function must implement certain specific functions required by the
S-function API. These are described in “Functions Required by S-Function
API” on page 10-8.

Since these functions are private to the source file, you can incorporate
multiple instances of the same S-function into a model.

Note Device driver S-functions used in simulation should not contain code
that is intended to operate in real time on the target hardware, or that
accesses actual target hardware addresses. Since your target I/O hardware is
not present during simulation, writing to addresses in the target environment
can result in illegal memory references, overwriting system memory, and
other severe errors. Similarly, read operations from nonexistent hardware
registers can cause model execution errors.

Writing a Device Driver C-MEX S-Function

10-7

Required Defines and Include Files
Your driver S-function must begin with the following three statements, in the
following order:

1 #define S_FUNCTION_NAME name

This defines the name of the entry point for the S-function code. name must
be the name of the S-function source file, without the .c extension. For
example, if the S-function source file is example_hc12_sfcn_adc_v.c.

#define S_FUNCTION_NAME example_hc12_sfcn_adc_v

2 #define S_FUNCTION_LEVEL 2

This statement defines the file as a level 2 S-function. This allows you to
take advantage of the full feature set included with S-functions. Level-1
S-functions are currently used only to maintain backwards compatibility.

3 #include simstruc.h

The file simstruc.h defines the SimStruct (the Simulink data structure)
and associated accessor macros. It also defines access methods for the mx*
functions from the MATLAB MEX API.

The final statement in your S-function is equally critical. Assuming that your
S-function contains only simulation code, your code must end with the
following.

#include "simulink.c"

simulink.c provides required functions interfacing to Simulink.

Other Preprocessor Symbols
Real-Time Workshop defines several preprocessor symbols that affect how
S-functions are built. The conventions for use of these symbols are as follows:

10 Developing Device Drivers for Embedded Targets

10-8

• MATLAB_MEX_FILE

When you build your S-function as a MEX-file with the mex command,
MATLAB_MEX_FILE is automatically defined.

A test on MATLAB_MEX_FILE, such as the following, is useful in drivers that
contain only simulation code intended for use in an S-function. This test
ensures that the driver S-function is compiled only as a C MEX-file.
#ifndef MATLAB_MEX_FILE
#error "Fatal Error: ADC_examp.c can only be used to create C-MEX S-Function"
#endif

• MDL_START

The model execution loop calls mdlStart only if the symbol MDL_START is
declared with a #define statement. If you write a mdlStart function without
defining MDL_START, an “unreferenced function” compile-time warning occurs
when you build your S-function, and the mdlStart code is never be called
during simulation. See “mdlStart” on page 10-12 for an example.

Functions Required by S-Function API
The S-function API requires you to implement several functions in your
simulation driver:

• mdlInitializeSizes specifies the sizes of various parameters in the
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

If your device driver block is masked, your initialization functions can obtain
the sample time and other parameters entered by the user in the block’s
dialog.

• mdlOutputs: For an input device, mdlOutputs usually outputs a nominal
value (such as zero) on all channels during simulation. Another approach is
to replicate the block’s inputs at the outputs. For an output device,
mdlOutputs can be implemented as a stub.

• mdlTerminate: This function can be implemented as a stub.

In addition to the above, you may want to implement the mdlStart function.
mdlStart is called once at the start of model execution.

This following sections provide guidelines for implementing these functions.
Code examples are taken from the example input device driver, ADC_examp.

Writing a Device Driver C-MEX S-Function

10-9

Macro and Symbol Definitions for ADC_examp.c
ADC_examp.c defines the following symbols and macros, referenced throughout
the code examples below. Note how the example optimizes storage space by
using an enum statement to define a set of masks that correspond to bit
positions in a single word representing the device data.

#define TRUE 1
#define FALSE 0

/* Total number of block parameters */
#define N_PAR 5

/*
 * CHANNELARRAY_ARG - Array of ADC channels (one or more values between 0 and 7)
 * Signal width is also determined from this list
 * SAMPLETIME(S) - Sample time
 % ATDBANK(S) - Bank 0, or Bank 1. Each bank provides 8 channels.
 * USE10BITS(S) - If (USE10BITS_ARGC==1), use 10-bits of ADC resolution
 * otherwise, use 8-bits ADC resolution
 * LEFTJUSTIFY(S) - If (LEFTJUSTIFY_ARGC==1), left justify the result in
 * 16-bit word. Else, use right justification (default)
 */

/* Define a set of masks that correspond to bit positions in a single word
* representing device data.
*/

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,
SAMPLETIME_ARGC};

#define ATDBANK(S) (mxGetScalar(ssGetSFcnParam(S,ATDBANK_ARGC)))
#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))
#define USE10BITS(S) (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))
#define LEFTJUSTIFY(S) (mxGetScalar(ssGetSFcnParam(S,LEFTJUSTIFY_ARGC)))
#define SAMPLETIME(S) (mxGetScalar(ssGetSFcnParam(S,SAMPLETIME_ARGC)))

mdlInitializeSizes
The mdlInitializeSizes function specifies the sizes of various parameters in
the SimStruct. In example below, this information partially depends upon the
parameters passed to the S-function. See “Creating a User Interface for Your
Driver” on page 10-16 for information on how to access parameter values
specified in S-function dialogs.

10 Developing Device Drivers for Embedded Targets

10-10

The mdlInitializeSizes function for the example input device driver,
ADC_examp, is listed below.

static void mdlInitializeSizes(SimStruct *S)
{
 const unsigned int *paramPtr = mxGetData(CHANNELARRAY_ARG(S));
 int nChannels, paramDataTypeFlag;
 /* Set and Check parameter count */

 ssSetNumSFcnParams(S, N_PAR);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) return;

 nChannels = mxGetNumberOfElements(CHANNELARRAY_ARG(S));

 /* Single input port of width equal to nChannels */
 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, nChannels);

 /* Single output port of width equal to nChannels */
 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth(S, 0, nChannels);

 /* Set datatypes on input and output ports relative
 * to users choice of 8-, or, 10-bit resolution.
 */
 if (USE10BITS(S))
 {
 /*
 * Input and output datatypes are uint16
 * when using 10-bit ADC resolution
 */
 ssSetInputPortDataType(S, 0, SS_UINT16);
 ssSetOutputPortDataType(S, 0, SS_UINT16);
 } else {
 /*
 * Input and output datatypes are uint8
 * when using 8-bit ADC resolution
 */
 ssSetInputPortDataType(S, 0, SS_UINT8);
 ssSetOutputPortDataType(S, 0, SS_UINT8);
 }

 ssSetInputPortDirectFeedThrough(S, 0, TRUE);

 /* sample times */
 ssSetNumSampleTimes(S, 1);

 /* options */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
 } /* end mdlInitializeSizes */

The above mdlInitializeSizes function does the following, in order:

Writing a Device Driver C-MEX S-Function

10-11

• Validates that the number of input parameters is equal to the expected
number of parameters in the block’s dialog (N_PARS).

• Obtains nChannels, the number of ADC channels (specified as a vector in the
Channels parameter of the block dialog). The widths of the input and output
ports are set equal to nChannels. Notice that the code ensures that the block
has exactly one input port and one output port.

• Obtains the user-selected resolution value (returned by USE10BITS) and sets
the port data types for the block.

• Sets the direct feedthrough property of the block to TRUE. (In simulation, the
ADC_examp output is replicated from the block input you would normally
connect the ADC_examp input to a Ground.)

Note that in many cases, input driver blocks do not have input ports. (Input
ports can be used, however, to provide pass-through capability to a driver
during simulation. See “Device Drivers in Simulation” on page 10-41 for
further information.) If your input driver block has no input ports, set the
number of input ports to 0.
ssSetNumInputPorts(S, 0);

• Calls ssSetNumSampleTimes to set the number of sample times to 1. This is
correct for a driver where all ADC channels run at the same rate. Note that
the actual sample period for the block is set in mdlInitializeSampleTimes.

• Specifies the following S-function option SS_OPTION_EXCEPTION_FREE_CODE.
This option declares that the block does not throw exceptions. Use this option
with care. See “Exception Free Code” in the Writing S-Functions
documentation.

mdlInitializeSizes for Output Drivers. Note that initializing size information for an
output device, such as a DAC, differs in several important ways from
initializing sizes for an ADC:

• Since a DAC obtains its inputs from other blocks, the number of channels is
equal to the number of inputs.

A DAC is a sink block. That is, it has input ports but typically has no output
ports. (Output ports can be used, however, to provide pass-through
capability to a driver during simulation. See “Device Drivers in Simulation”
on page 10-41 for further information.) If your output driver block has no
output ports, set the number of output ports to 0.

10 Developing Device Drivers for Embedded Targets

10-12

ssSetNumOutputPorts(S, 0);

• A DAC block has direct feedthrough. The DAC block cannot execute until the
block feeding it updates its outputs.

mdlInitializeSampleTimes
Device driver blocks are discrete blocks, requiring you to set a sample time. The
procedure for setting sample times is the same for both input and output device
drivers. Assuming that all channels of the device run at the same rate, the
S-function has only one sample time.

The following implementation of mdlInitializeSampleTimes (from
ADC_examp) obtains the sample time from the block’s dialog. The sample time
offset is set to 0.

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, SAMPLETIME(S));

} /* end mdlInitializeSampleTimes */

mdlStart
mdlStart is an optional function. It is called once at the start of model
execution. In ADC_examp, mdlStart simply displays a message in the MATLAB
Command Window:

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{
/* During simulation, just print a message */
 if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
 mexPrintf("\n ADC_examp driver: Simulating initialization\n");
 }
}
#endif /* MDL_START */

Writing a Device Driver C-MEX S-Function

10-13

Note The model execution loop calls mdlStart only if the symbol MDL_START
is declared as shown above. If you write a mdlStart function without defining
MDL_START, an “unreferenced function” compile-time warning occurs when you
build your S-function, and the mdlStart code is never be called during
simulation.

mdlOutputs
All S-functions implement a mdlOutputs function to calculate block outputs.
For many simulation drivers, this is a simple task. In the simplest case, the
mdlOutputs function for an input simulation driver generates a nominal value
(usually 0), on all channels. The following code fragment, from a hypothetical
simulation driver for an ADC with a fixed number of channels, illustrates this
approach.

for (i = 0; i < NUM_CHANNELS; i++){
y[i] = 0.0;

}

An output simulation driver, which is a sink, can often be implemented as a
stub.

10 Developing Device Drivers for Embedded Targets

10-14

The ADC_examp driver implements a more complex mdlOutputs function, listed
below.

static void mdlOutputs(SimStruct *S, int_T tid)
{
 /*
 * Get "uPtrs" for input port 0 and 1.
 * uPtrs is essentially a vector of pointers because the input signal may
 * not be contiguous.
 */

 DTypeId y0DataType; /* SS_UINT8 or SS_UINT16 */
 int_T y0Width = ssGetOutputPortWidth(S, 0);
 InputPtrsType u0Ptrs = ssGetInputPortSignalPtrs(S,0);

 /*
 * Get data type Identifier for output port 0.
 * This matches the data type ID for input port 0.
 */

 y0DataType = ssGetOutputPortDataType(S, 0);
 y0Width = ssGetOutputPortWidth(S, 0);

 /*
 * Set output signals equal to input signals
 * for either 16 bit, or 8 bit signals.
 */

 switch (y0DataType)
 {
 case SS_UINT8:
 {
 uint8_T *pY0 = (uint8_T *)ssGetOutputPortSignal(S,0);
 InputUInt8PtrsType pU0 = (InputUInt8PtrsType)u0Ptrs;
 int i;
 /* Set all outputs equal to inputs */
 for(i = 0; i < y0Width; ++i){
 pY0[i] = *pU0[i];
 /* For 8-bit ADC results, left-justify is ignored. */
 }
 break;
 }
 case SS_UINT16:
 {
 uint16_T *pY0 = (uint16_T *)ssGetOutputPortSignal(S,0);
 InputUInt16PtrsType pU0 = (InputUInt16PtrsType)u0Ptrs;
 int i;

 for(i = 0; i < y0Width; ++i){
 /* Set all outputs equal to inputs */
 if (LEFTJUSTIFY(S)) {
 /* Shift left for left justify */

Writing a Device Driver C-MEX S-Function

10-15

 pY0[i] = *pU0[i]<<6;
 } else {
 /* No shift required for right justify */
 pY0[i] = *pU0[i];
 }
 }
 break;
 }
 } /* end switch (y0DataType) */

} /* end mdlOutputs */

This mdlOutputs function is designed to handle the following requirements:

• Rather than simply generating zeroes, the block passes through an input
signal for use in simulation by simply setting outputs equal to inputs.

• I/O ports are variably typed to be either uint8 or unit16, depending on the
user’s choice of ADC resolution. The port data type is obtained with the call
y0DataType = ssGetOutputPortDataType(S, 0);

A switch(y0DataType)statement then determines how the input signal is
passed to the output. In the 16-bit case, the data may be right-shifted
(justified).

• I/O port widths are variable, in accordance with the number of ADC channels
(specified as a vector in the Channels parameter of the block dialog). The
port width is obtained with the call
int_T y0Width = ssGetOutputPortWidth(S, 0);

y0Width is then used to control iteration over the I/O signals:

for(i = 0; i < y0Width; ++i){
pY0[i] = *pU0[i];

}

mdlTerminate
In ADC_examp, the mdlTerminate function is provided as a stub, to satisfy the
requirements of the S-function API.

static void mdlTerminate(SimStruct *S)
{
} /* end mdlTerminate */

10 Developing Device Drivers for Embedded Targets

10-16

Creating a User Interface for Your Driver
You can add a custom icon, dialog, and initialization commands to an
S-Function block by masking it. This provides an easy-to-use graphical user
interface for your device driver in the Simulink environment.

This section uses examples drawn from an actual masked device driver block.
You should have basic familiarity with the creation and use of masked blocks.
These topics are discussed in the Using Simulink and Writing S-Functions
documentation.

The example driver, ADC_examp, is an input device driver.

ADC_examp illustrates a number of techniques for parameterizing a driver by
letting the user enter hardware-related variables. Figure 10-1 shows the dialog
that ADC_examp presents to the user. Parameter values are shown at their
default values.

Figure 10-1: Dialog for ADC_Examp Driver Block

The Simulink user can enter the following parameters:

ADC bank (menu): Selects one of two 8-channel ADC banks (either bank 0 or
1).

Channels (edit field): Specifies input channel(s) to be read. Channels are
numbered in the range 0-7. Selected channels are represented as a vector.

Creating a User Interface for Your Driver

10-17

ADC resolution (menu): Selects either 8 bits or 10 bits of resolution. If 10 bit
resolution is selected, the input signal data is stored in 16 bits.

Word alignment: If ADC resolution is set to 10 bits, the user can select either
right or left justification of input data within a 16-bit word. Default is right
justification.If ADC resolution is set to 8 bits, input data is stored as a uint8,
and Word alignment is ignored.

Sample time (menu): Sample time for the block.

You specify block parameters in Parameters pane of the Simulink Mask
Editor. Figure 10-2 shows how the parameter section of the mask is defined for
the ADC_Examp driver. In the ADC_Examp driver, block parameters are declared
nontunable in the block mask. If you do not do this, you can declare parameters
nontunable by using the ssSetParameterTunable macro in the
mdlInitializeSizes routine. Nontunable S-function parameters become
constants in the generated code, improving performance.

In certain cases, you may want your driver block to be selfmodifying. For
example, the block may have a parameter that lets the user set the number of
input or output ports on the block. In such cases, you should select the Allow
library block to modify its contents option in the Initialization pane of the
Mask Editor (see “The Mask Editor” in the Simulink documentation).

10 Developing Device Drivers for Embedded Targets

10-18

Figure 10-2: Parameter Mask definition for ADC_Examp Block

The block parameters underlying the mask (see Figure 10-3) provide a binding
to the C-MEX S-function (DLL) for use in simulation, and a list of parameter
variables corresponding to the S-function parameters field. Note that:

• Values returned from menus are offset by -1 (because menus are 1-based).

• Parameter variables, except sampletime, are explicitly cast to unsigned
integer data types. The S-function parameters field contains the following
list of expressions.

uint8(bank-1), uint16(channels), uint8(use10bits-1), uint8(left_justify-1),
sampletime

During the build process, parameter expressions are evaluated and the
resultant values are written to Parameter records in the model.rtw file.
These records are used when code is generated by the TLC implementation
of the block (see “Inlining the S-Function Device Driver” on page 10-23).

Creating a User Interface for Your Driver

10-19

Figure 10-3: Block Parameters Underlying ADC_Examp Block

It is typical for a device driver block to read and validate input parameters in
its mdlInitializeSizes function. A masked S-Function block obtains
parameter data from its dialog using macros and functions provided for the
purpose. Let’s examine some cases from the mdlInitializeSizes function of
ADC_Examp.c.

Obtaining and Using a Scalar Parameter
In the following code excerpt, the macro USE10BITS is defined. When invoked,
USE10BITS returns the value obtained from the ADC resolution menu.

10 Developing Device Drivers for Embedded Targets

10-20

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,
SAMPLETIME_ARGC};
...
#define USE10BITS(S) (mxGetScalar(ssGetSFcnParam(S,USE10BITS_ARGC)))
...
/* Set datatypes on input and output ports relative
 * to users choice of 8-, or, 10-bit resolution.
 */
 if (USE10BITS(S))
 {
 /*
 * Input and output datatypes are uint16
 * when using 10-bit ADC resolution
 */
 ssSetInputPortDataType(S, 0, SS_UINT16);
 ssSetOutputPortDataType(S, 0, SS_UINT16);
 } else {
 /*
 * Input and output datatypes are uint8
 * when using 8-bit ADC resolution
 */
 ssSetInputPortDataType(S, 0, SS_UINT8);
 ssSetOutputPortDataType(S, 0, SS_UINT8);
 }

The parameter from the dialog is accessed with the ssGetSFcnParam macro.
The arguments to ssGetSFcnParam are a pointer to the block’s Simstruct, and
the index (0-based) to the desired parameter.

Parameters are stored in arrays of type mxArray, even if there is only a single
value. In the above code, the value of the first element of the mxArray returned
by ssGetSFcnParam is obtained with the mxGetScalar function.

The value returned by USE10BITS is used to set the port data types for the
block, in accordance with the user-selected resolution. The larger (uint16) data
type is used only when necessary.

Obtaining and Using a Vector Parameter
This section shows another code excerpt that illustrates the use of a vector
parameter. You enter the Channels parameter as a vector of channels in the
range 0..7. The macro CHANNELARRAY_ARG returns this vector, and the

Creating a User Interface for Your Driver

10-21

mxGetNumberOfElements function is called to obtain the number of vector
elements. The port widths for the block are set accordingly.

enum {ATDBANK_ARGC=0, CHANNELARRAY_ARGC, USE10BITS_ARGC, LEFTJUSTIFY_ARGC,
SAMPLETIME_ARGC};
...
#define CHANNELARRAY_ARG(S) (ssGetSFcnParam(S,CHANNELARRAY_ARGC))
...
nChannels = mxGetNumberOfElements(CHANNELARRAY_ARG(S));

 /* Single input port of width equal to nChannels */
 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth(S, 0, nChannels);

 /* Single output port of width equal to nChannels */
 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth(S, 0, nChannels);

The MathWorks recommends that you study the entire mdlInitializeSizes
function of ADC_Examp.c for further examples of the use of masked block
parameters in the context of a device driver.

10 Developing Device Drivers for Embedded Targets

10-22

Building the MEX-File and the Driver Block
This section outlines how to build a MEX-file from your driver source code for
use in Simulink. For full details on how to use mex to compile an executable
MEX-file, see “External Interfaces/API” in the MATLAB online
documentation:

1 Your C S-function source code should be in your working directory. To build
a MEX-file from mydriver.c, type

mex mydriver.c

mex builds mydriver.dll (PC) or mydriver (UNIX).

2 Add an S-Function block (from the Simulink Functions & Tables library in
the Library Browser) to your model.

3 Double-click the S-Function block to open the Block Parameters dialog.
Enter the S-function name mydriver. The block is now bound to the
mydriver MEX-file.

4 Create a mask for the block if you want to use a custom icon or dialog (see
“Creating a User Interface for Your Driver” on page 10-16).

5 You should create a block library and add your driver to it, or add your driver
to an existing block library. See “Working with Block Libraries” in the Using
Simulink document to learn how to do this.

Making Your Drivers Available to Users
Your driver implementation files should be stored in a directory that is on the
MATLAB path. You should create a blocks directory under your target root
directory (for example, mytarget/blocks). The blocks directory should contain

• Compiled block MEX- files

• C source code for the blocks

• TLC inlining files for the blocks

• Library models for the blocks. You should place your blocks in one or more
libraries.

Inlining the S-Function Device Driver

10-23

Inlining the S-Function Device Driver
This section explains how to inline the S-function device driver. Topics include:

• “Code Components” on page 10-23

• “Inlined Device Driver Operations” on page 10-24

• “Inlining the Example ADC Driver” on page 10-24

Code Components
To create a fully inlined device driver, you must provide the following
components:

• driver.c: C MEX S-function source code, implementing the functions
required by the S-function API for a simulation driver. (See “Writing a
Device Driver C-MEX S-Function” on page 10-6.) For these functions, only
the code for simulation in Simulink is required.

Optionally, driver.c may implement a mdlRTW function. The sole purpose of
this function is to evaluate and format parameter data during code
generation. The parameter data is output to the model.rtw file. See “Passing
and Obtaining Block Parameter Values with mdlRTW” on page 10-26.

It is important to ensure that driver.c does not attempt to read or write
memory locations that are intended to be used in the target hardware
environment. The real-time driver implementation, generated with a
driver.tlc file, should access the target hardware.

• driver.ext : MEX-file built from your C MEX S-function source code. The
filename extension ext varies depending on the platform. For example, on
the PC, the extension is .dll.

This component is used:

- In simulation: Simulink calls the simulation versions of the required
functions

- During code generation: If a mdlRTW function exists in the MEX-file, the
code generator executes it to write parameter data to the model.rtw file.

• driver.tlc: TLC functions that generate real-time implementations of the
functions required by the S-function API.

• Hardware support files: Header files, macro definitions, or code libraries that
may be provided with your I/O devices or cross-development system. It may

10 Developing Device Drivers for Embedded Targets

10-24

be necessary to generate #include statements or other directives required
for using such support files. See “Generating Target-Specific Compiler
Directives” on page 10-25 for information on how to generate these
directives.

Inlined Device Driver Operations
Typical operations performed by an inlined device driver include

• Initializing the I/O device. For example, the driver may need to write specific
values to one or more control registers to set the device into a desired mode
of operation.

• Calculating the block outputs. How this is done depends upon the type of
driver being implemented:

- An input driver for a device such as an ADC usually reads values from an
I/O device and assigns these values to the block’s output vector y.

- An output driver for a device such as a DAC usually writes values from the
block’s input vector u to an I/O device.

• Terminating the program. This may require setting hardware to a “neutral”
state; for example, zeroing DAC outputs.

In generated code, these operations are usually executed within the standard
model functions, such as model_initialize, model_step, and model_terminate.

Inlining the Example ADC Driver
As an aid to understanding the process of inlining a device driver, this section
describes the TLC implementation of the ADC_examp driver. Full TLC source
code for ADC_examp.tlc is provided in the directory

matlabroot/toolbox/rtw/targets/common/examples/ADC_driver_example

The TLC implementation of the ADC_examp driver is somewhat simpler than
the simulation code. It contains only three TLC functions:

• The Start function generates code that is inlined into the model_initialize
function. The code initializes several control registers of the HC12 ADC
device.

Inlining the S-Function Device Driver

10-25

• The Outputs function generates code that is inlined into the model_step
function. The code reads data from one or more ADC channels. The data is
assigned to the block outputs.

• The BlockTypeSetup function generates #include directives and symbol
definitions for use with the Metrowerks CodeWarrior compiler for the
Motorola HC12.

Generating Target-Specific Compiler Directives
Device driver code often references target-specific symbols that are defined
externally to the generated code. These symbols represent specific hardware
registers, memory addresses, or operating system functions. For example, the
Start and Outputs functions described above generate code to read and write
various HC12 ADC registers.

These are typically defined in header files provided by the vendor of the target
hardware or the cross-development system that compiles the generated code.

Such references are resolved by generating compiler directives (such as
#include or #define statements). These directives can be generated:

• By the device driver block itself. This is often done in the BlockTypeSetup
function of the driver TLC implementation. (See the discussion of the
ADC_Examp example below.)

• By a “master” device driver block. Some targets (such as the Embedded
Target for Motorola MPC555 the Embedded Target for Motorola HC12)
implement a master block that manages hardware resources for multiple
drivers. Such targets require inclusion of the master block in the model.
Accordingly, the BlockTypeSetup function for the master block can generate
the includes required by all the other blocks.

Example BlockTypeSetup Function. The ADC_Examp driver implements a
BlockTypeSetup function that illustrates one possible approach to the
generation of compiler directives for a particular cross-development system.
This BlockTypeSetup function generates only #include statements and
symbol definitions. The generated code is written to the model_private.h
function.

The generated directives are intended for use with the Metrowerks
CodeWarrior compiler for the Motorola HC12 (Version 2.0 or 1.2). The included

10 Developing Device Drivers for Embedded Targets

10-26

header files define all the symbols required to compile code generated by
ADC_Examp.tlc when included in a Metrowerks CodeWarrior project.

The BlockTypeSetup function uses the recommended cacheing function
(LibCacheIncludes) for generating #include statements. For details, see the
following sections in the Target Language Complier documentation:

• “TLC Function Library Reference” describes the use of the
LibCacheIncludes function.

• “Block Functions” describes the BlockTypeSetup function in general.

Passing and Obtaining Block Parameter Values with mdlRTW
The driver S-function (ADC_examp.c) implements a mdlRTW function to pass
user-entered parameter values (ADC bank, Channels, ADC resolution, and
Word alignment) to the model.rtw file.

The mdlRTW function is a mechanism by which a C-MEX S-function can
generate and write data structures to the model.rtw file. The Target Language
Compiler, in turn, uses these data structures when generating code. The
simplest application of mdlRTW is to pass block parameter data into the
model.rtw file. However, mdlRTW also lets you compute virtually any useful
data and pass it into the model.rtw file.

Unlike the other functions in a simulation driver, mdlRTW executes at code
generation time. The mdlRTW mechanism is fully described in the The “Writing
S-Functions for Real-Time Workshop” chapter of the Real-Time Workshop
documentation. This section shows the use of mdlRTW in the ADC_examp device
driver.

The mdlRTW function in ADC_examp.c obtains user-entered paraneter values
using the symbol and macro definitions described in “Macro and Symbol
Definitions for ADC_examp.c” on page 10-9. It then generates a structure that
contains these values in the model.rtw file. Macros (such as
SSWRITE_VALUE_DTYPE_NUM) are defined for this purpose. These macros are
described in the Writing S-Functions documentation.

Inlining the S-Function Device Driver

10-27

The mdlRTW function from ADC_examp.c is listed below.

static void mdlRTW(SimStruct *S)
{
 uint8_T atdbank = (uint8_T) ATDBANK(S);
 uint16_T *channels = (uint16_T *) mxGetData(CHANNELARRAY_ARG(S));
 uint8_T use10BitRes = (uint8_T) USE10BITS(S);
 uint8_T leftjustify = (uint8_T) LEFTJUSTIFY(S);

 /* Write out parameters for this block.*/
 if (!ssWriteRTWParamSettings(S, 4,
 SSWRITE_VALUE_DTYPE_NUM,"ATDBank",
 &atdbank,DTINFO(SS_UINT8, COMPLEX_NO),

 SSWRITE_VALUE_DTYPE_VECT, "Channels",
 channels,
 mxGetNumberOfElements(CHANNELARRAY_ARG(S)),
 DTINFO(SS_UINT16, COMPLEX_NO),

 SSWRITE_VALUE_DTYPE_NUM,"Use10BitRes",
 &use10BitRes,DTINFO(SS_UINT8, COMPLEX_NO),

 SSWRITE_VALUE_DTYPE_NUM,"LeftJustify",
 &leftjustify,DTINFO(SS_UINT8, COMPLEX_NO)
)) {
 return; /* An error occurred which will be reported by SL */
 }
}

A typical model.rtw structure generated by this mdlRTW function is

SFcnParamSettings {
ATDBank 1U
Channels [0U]
Use10BitRes 0U
LeftJustify 1U
}

The field values of SFcnParamSettings derive from data that you enter.

Values stored in the SFcnParamSettings structure are referenced in the TLC
block implementation, as in the following code excerpt:

%assign Use10BitResolution = CAST("Number",SFcnParamSettings.Use10BitRes)
%assign LeftJustify = CAST("Number",SFcnParamSettings.LeftJustify)

See “Start Function” below, and the ADC_examp.tlc code, for further examples
of how the SFcnParamSettings structure is used to generate code for the driver
block.

10 Developing Device Drivers for Embedded Targets

10-28

Note During code generation, Real-Time Workshop writes run-time
parameters automatically to the model.rtw file, eliminating the need for an
S-function to perform this task with a mdlRTW method. However, these
run-time parameters are always tunable. Generally, it is not appropriate for
device driver parameters to be tunable. Thus, the need to use the more
lengthy approach of using the S-function parameter settings for device
drivers. See the discussion of runtime parameters in the Writing S-Functions
documentation for further information.

Start Function
The purpose of the Start function, in the TLC file ADC_examp.tlc, is to
generate code that initializes several 8-bit control registers of the HC12 ADC
device. Each ADC bank (0 or 1) has a separate set of control registers. The bank
number is the only variable. Regardless of which bank is selected, the same set
of registers is initialized to the same set of bit values.

The symbolic naming convention for these registers is

ATDbCTLr

where b is the user-selected ADC bank and r is a register number. For
example, ATD0CTL1 represents bank 0, control register 1.

The Start function obtains the value for b from the SFcnParamSettings
structure (see “Passing and Obtaining Block Parameter Values with mdlRTW”
on page 10-26) and uses the returned value in a string substitution, as in the
following code excerpt.

%assign atdBank = CAST("Number",SFcnParamSettings.ATDBank)
 ...
ATD%<atdBank>CTL2 = 0x80;

For bank 1, this would generate the following statement in the
model_initialize function.

ATD1CTL2 = 0x80;

Note also that the Start function generates extensive comments in the code,
documenting each register bit setting. A block comment is also generated. You
should follow this practice.

Inlining the S-Function Device Driver

10-29

Outputs Function
The Outputs function generates code that repeats the same operations (as
inlined code) for all selected ADC channels on the selected ADC bank. For each
channel (channelIdx):

• A data conversion is initiated by setting the appropriate channel bits
(channelIdx) on ADC control register 5. As in the Start function, the bank
parameter is substituted into the register symbol.
(ATD%<atdBank>CTL5)

The resultant code, for bank 1, channel 0, is
/* Start conversions on selected ADC channels */
ATD1CTL5 = 0x80;

• The driver continually checks a status register until a conversion completion
flag is asserted. The status register symbol is generated by concatenating the
current channelIdx and bank parameters.
(CCF%<channelIdx>_%<atdBank>)

The resultant code, for bank 1, channel 0, is
while (CCF0_1 & 0) {

/* Wait for Conversion Complete Flag (CCFx)
* for a conversion on this channel.
/*

}

• When conversion completes, data is read from a data register for the current
bank and channel. Again the register symbol is formed by string substitution
of the current channelIdx and bank parameters.
ATD%<atdBank>DR%<channelIdx>;

The data read from the register is cast to the required data size and
left-shifted (justified) if required. The result is assigned to the block output.

The code generated for each channel consists of a single line. For example,
for the case where 10 bit resolution with left justification is selected.

/* 10-bit resolution */
/* Left-justified ADC result */
ADC_examp_model_B.ADC_out = (uint16_T) ATD1DR0 << 6;

10 Developing Device Drivers for Embedded Targets

10-30

Creating Device Drivers with the S-Function Builder
Traditionally, device drivers used with Simulink and Real-Time Workshop
Embedded Coder have relied on a dual implementation. For simulation use,
you write a device driver block as a Simulink S-function. You also must write
a TLC file for inlined code generation purposes.

During simulation, Simulink requires a MEX-file (a .dll file on the PC
platform) for an S-function. This MEX-file must provide information such as:

• Number of input signals

• Data types of input signals

• Number of output signals

• Data types of output signals

• Number of parameters for the block

• Data types of parameters

During simulation, the block should provide outputs even if the value is trivial
(such as 0 or 1). Assuming the output device is designed so that it has an output
signal (in simulation), the appropriate output signal should be provided by the
S-function MEX-file.

Defining the correct simulation output for a device driver block is beyond the
scope of this discussion. The focus of this discussion is how to create driver
blocks for the purpose of generating code with Real-Time Workshop Embedded
Coder.

To create a MEX-file for your S-function, you can

• Write the S-function manually. The Writing S-Functions documentation
covers this topic.

• Use the Simulink S-Function Builder as a shortcut. If you have little
experience in writing S-functions, you should use the S-Function Builder.

Creating Device Drivers with the S-Function Builder

10-31

Note Currently, the S-Function Builder does not support a device driver
mode. Consequently, device driver code resulting from its use may be less
optimized than S-function driver code written by hand. Also, since the
S-Function Builder supports only a subset of the S-function API, driver code
that you produce with the S-Function Builder may lack some desired features.

This documentation describes the S-Function Builder in sufficient detail for
you to get started building device drivers. For a full description of the
S-Function Builder, see the Simulink documentation.

In the following sections, you create a simple device driver S-function using the
S-Function Builder.

Example Device Driver Specification
The driver, mypwm, supports one channel of pulse width modulation (PWM)
output. The period of the output signal is fixed. The block has one input, which
accepts an 8-bit (type uint8) modulator signal. The duty cycle of the PWM
output signal is proportional to the input signal. The hardware address of the
input port is 0x18h and is to be symbolically defined in generated code as
PORTA.

Building the MEX-File
The first task is to specify the signals and other properties of the driver, and to
generate a MEX-file component:

1 Create a new Simulink model.

2 Copy an instance of the S-Function Builder block from the Simulink
User-Defined Functions library into the new model. Open the Simulink
Library Browser.

3 Double-click the block to open the S-Function Builder dialog.

4 Enter the name of the S-function, mypwm, in the S-function name field.

5 Select the Initialization pane. Make sure that all numeric parameters are
set to their defaults (zero) and that Sample mode is set to Inherited.

10 Developing Device Drivers for Embedded Targets

10-32

6 Select the Data Properties pane.

7 In the Port and Parameter properties pane, select Input ports. Specify
the input (PWM modulator) port as follows:

- Port name: u0

- Data type: uint8

- Other properties: use defaults

8 Still in the Port and Parameter properties pane, select Output ports.
Specify the output (PWM signal) port as follows:

- Port name: y0

- Data type: uint8

- Other properties: use defaults

Note By default, the Port and Parameter properties pane specifies one
input and one output port. However. many device drivers require only an
input port or only an output port. For example, an input driver for an
analog-to-digital converter requires only an output. In such cases, you should
select the port that is not needed in the Port and Parameter properties pane
and delete it.

9 Leave all fields under the Parameters tab blank. In a real-world driver, you
might parameterize hardware settings or other options and add them to
your block’s mask. For simplicity, this example assumes no parameters are
used.

10 Leave the Libraries pane unchanged. The driver does not refer to any
external source or object files.

11 Select the Outputs pane and insert a line of C code.

y0[0] = u0[0];

This allows the input signal to pass through this block unchanged during
simulation.

Creating Device Drivers with the S-Function Builder

10-33

12 Do not place any additional code under the Continuous Derivatives or
Discrete Update panes.

13 Select the Build Info pane. Make sure the Generate wrapper TLC option
is selected. All other options should be deselected.

14 Click Build. The S-function Builder generates several files in your working
directory. The names of the generated files are displayed in the Build Info
pane. Two of them are of interest to us later on:

- mypwm.dll: MEX-file component for use in simulation.
- mypwm.tlc: TLC code for generating wrapper S-function.

15 Deselect the Generate wrapper TLC option. You edit the generated TLC
file, and do not regenerate the TLC file and overwrite edited code.

16 Close the S-Function Builder.

17 Save your model.

Binding the MEX-File to an S-Function Block
In this section you create a binding between the previously created MEX-file
and a standard Simulink S-function block:

1 Copy an instance of the S-Function block from the Simulink User-Defined
Functions library into your model.

2 Double-click on the S-Function block to open its dialog. Enter mypwm as the
S-Function name property.

3 Click Apply and close the dialog.

4 Label the S-Function block pwm driver.

5 Save the model.

In developing a real-world driver, you would place the pwm driver S-Function
block into your own drivers library. It is also good practice to keep S-Function
blocks that link to generated MEX-files (such as pwm driver separate from the
S-Function Builder blocks that generated them. This avoids the possibility that

10 Developing Device Drivers for Embedded Targets

10-34

an end user could modify the behavior of this block and generate code
unintentionally.

Generated driver MEX-files should be stored in a directory on the MATLAB
path along with your other target files.

Masking the Block
In this section you embed the pwm driver S-Function block in a masked
subsystem. This is useful if simulation and/or code generation parameters
parameters are to be added to the driver later:

1 Click on the pwm driver block.

2 Select Create subsystem from the Edit menu in the model window. pwm
driver is now encapsulated in a subsystem.

3 Right-click on the subsystem and select Mask subsystem from the context
menu. The Mask Editor window opens.

4 In the Icon pane, add drawing commands.

disp('MYPWM')
port_label('input',1,'Duty cycle')

5 Right-click on the subsystem and select Look under mask from the context
menu. You now apply a mask to the underlying S-Function block.

6 Right-click on the S-Function block and select Mask S-function from the
context menu. The Mask Editor window opens.

7 In the Mask Initialization pane, add the following code.

s = struct('port','PORTA');
set_param(gcb,'RTWData',s);

This code extracts mask data (the symbolic port name, PORTA) into a structure
that is written into the RTWData structure of the model.rtw file during code
generation. This data is then available for use by the TLC file that generates
code for the driver block. (See the “Writing S-Functions for Real-Time
Workshop” section in the Writing S-Functions documentation for further
information on using RTWData.)

Creating Device Drivers with the S-Function Builder

10-35

Customizing Driver Code Generation
When the mypwm was built, the Generate wrapper TLC option was selected. In
this section, you generate code using the TLC file (mypwm.tlc) generated by the
S-Function Builder. You also examine the TLC file and the C code it produces,
and make changes. To exercise the underlying TLC file and inspect code
generation as it progresses, you create a test model test_mypwm. You then
modify the TLC code to generate C code that would be appropriate to an actual
hardware PWM driver:

1 Create a new model containing the PWM driver subsystem, with a Constant
block and a terminator, as shown in the figure below. Set the Constant value
to 50. In an actual PWM driver, this would generate a pulse signal with a
duty cycle of 50%.

2 Save the model as test_mypwm.

3 On the Solver pane of the Configuration Parameters dialog, set Solver
options to

- Type: Fixed-Step, discrete (no continuous states)

- Fixed-step size: 0.01

4 On the Target Configuration section of the Real-Time Workshop pane of
the Configuration Parameters dialog:

- Select the Real-Time Workshop Embedded Coder target (ert.tlc).

- Select the Generate code only option.

5 On the TLC debugging section of the Real-Time Workshop pane of the
Configuration Parameters dialog, select the Retain .rtw file option.

6 Save the model.

10 Developing Device Drivers for Embedded Targets

10-36

7 Click the Generate code button.

Real-Time Workshop generates C code for the model, as well as the .rtw file.
You now examine information related to the mypwm device driver in the
test_mypwm.rtw file.

8 The test_mypwm.rtw file is stored in the build directory. Open
test_mypwm.rtw into the MATLAB editor.

9 Search for rtwdata. For the PWM driver S-Function block you find

Block {
 Type "S-Function"
 InMask yes
 MaskType ""
 BlockIdx [0, 0, 1]
 ExprCommentInfo {

SysIdxList []
BlkIdxList []

 }
 ExprCommentSrcIdx {

SysIdx -1
BlkIdx -1

 }
 RTWdata {

port "PORTA"
 }
 Name "<S1>/pwm driver1"
 Identifier pwm_driver1
 TID 0
 RollRegions [0]
 NumDataInputPorts 1
 DataInputPort {

SignalSrc [C0]
DataTypeIdx 3
RollRegions [0]

 }

You can access the RTWdata information from the block as follows:

%assign someData = %<Block.RTWdata.port>

Creating Device Drivers with the S-Function Builder

10-37

With this information, focus on the mypwm.tlc file that was generated by the
S-Function Builder. The code excerpt below lists the entire file, except for
comments.

%function BlockTypeSetup(block, system) Output
 %openfile externs
 extern void mypwm_Outputs_wrapper(const uint8_T *u0,
 uint8_T *y0);
 %closefile externs
 %<LibCacheExtern(externs)>
 %%
%endfunction

%% Function: Outputs
==
%%
%% Purpose:
%% Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output
 /* S-Function "mypwm_wrapper" Block: %<Name> */

 %assign pu = LibBlockInputSignalAddr(0, "", "", 0)
 %assign py = LibBlockOutputSignalAddr(0, "", "", 0)
 %assign py_width = LibBlockOutputSignalWidth(0)
 %assign pu_width = LibBlockOutputSignalWidth(0)
 mypwm_Outputs_wrapper(%<pu>, %<py>);

 %%
%endfunction

%% [EOF] mypwm.tlc

For device drivers, this BlockTypeSetup section is inadequate. Replace the
BlockTypeSetup section with the following BlockTypeSetup function, which
contains a port address from the hypothetical target hardware.

%function BlockTypeSetup(block, system) Output
 %openfile defines

10 Developing Device Drivers for Embedded Targets

10-38

 #ifndef _MYPWM_
 /* This is a dummy address that you will replace with a
 * meaningful address or declaration suitable for your
 * hardware.
 */
 # define %<block.RTWdata.port> 0x18h
 # define _MYPWM_

 %closefile defines
 %<LibCacheDefine(defines)>
 %%
%endfunction

Here you do not import an external C file here as the original “wrapper” style
TLC code was doing. Instead, you introduce a #define relevant to our
particular hardware. Of course, this is an optional statement and could be
placed elsewhere. Another likely usage would be to modify the above code to
include a header file that defines a number of registers or ports by a variety of
PWM devices.

If you regenerate code using the modified mypwm.tlc, the following code is
generated into the file test_mypwm_private.h.

#ifndef _MYPWM_
/* This is a dummy address that you will replace with a
 * meaningful address or declaration suitable for your
 * hardware
 */
define PORTA 0x18h
define _MYPWM_
#endif

Note that the generated TLC file does not include a Start section. You can add
your own start section.

%% Function: Start==
%function Start(block, system) Output
/* Here you would introduce any additional lines of
code needed to initialize this device for your hardware.
For example, you could initialize the period of the PWM
device, its initial output, polarity, and so on.

Creating Device Drivers with the S-Function Builder

10-39

One obvious illustration could be just setting the initial
duty to zero as shown below:
*/

%<block.RTWdata.port> = 0x00h;

%endfunction

Now, look at the Outputs section. The portion of this code generated by
S-Function Builder is

%function Outputs(block, system) Output
 /* S-Function "mypwm_wrapper" Block: %<Name> */

 %assign pu = LibBlockInputSignalAddr(0, "", "", 0)
 %assign py = LibBlockOutputSignalAddr(0, "", "", 0)
 %assign py_width = LibBlockOutputSignalWidth(0)
 %assign pu_width = LibBlockOutputSignalWidth(0)
 mypwm_Outputs_wrapper(%<pu>, %<py>);

 %%
%endfunction

Rather than calling a function named mypwm_Outputs_wrapper, you want your
driver code to directly in-line the code that implements our PWM driver.
During the model outputs computation, this code only needs to translate the
input signal u to the PWM duty cycle. In this case, change the TLC code to

%% Function: Outputs
==
%%
%% Purpose:
%% Code generation rules for mdlOutputs function.
%%
%function Outputs(block, system) Output
 /* S-Function PWM Block: %<Name> */

 %assign u = LibBlockInputSignal(0, "", "", 0)
 %<block.RTWdata.port> = %<u>;

10 Developing Device Drivers for Embedded Targets

10-40

 %%
%endfunction

%% [EOF] mypwm.tlc

The resulting generated code is shown in the model step function of
test_mypwm.c as follows.

/* Model step function */
void test_mypwm_step(void)
{

 /* S-Function PWM Block: <S1>/pwm driver1 */

 PORTA = test_mypwm_P.Constant_Value;

 /* (no update code required) */

}

Device Drivers in Simulation

10-41

Device Drivers in Simulation
When designing device driver blocks, it is important to consider the role of your
drivers in both simulation and code generation. This section discusses two
approaches to the use of device drivers in simulation and code generation.

If you intend to use your drivers only in the code generation and deployment
stages of your development process, you can use separate models for simulation
and code generation. This multiple-model approach has a number of
advantages. For reasons discussed in “Multiple-Model Approach” on
page 10-41, this is the recommended approach.

If your driver blocks are used in simulation as well as in code generation, you
may want to use a single-model approach, which may require that your driver
blocks implement special behaviors (such as passing through their input
signals) during simulation. This approach is discussed in “Single-Model
Approach” on page 10-44.

Multiple-Model Approach
In many applications, it is possible to separate target-specific functions (for
example, device drivers or signal conditioning) from the algorithm embodied by
the model (for example, a controller). If the algorithmic part of the model can
be encapsulated in a common subsystem, it becomes relatively simple to
implement two separate models for simulation and code generation. Each
model contains the common subsystem, but only the code generation model
contains target-specific functions.

Consider a multiple-model approach to a plant/controller system, for example.
One model performs a closed-loop simulation of a plant and controller. A second
model, used for code generation only, includes the same controller and the I/O
device drivers. Code generated from the second model allows the controller to
be used in real time on a particular hardware target.

The models shown below illustrate this approach. These models were adapted
from the Simulink/Stateflow Fault-Tolerant Fuel Control System demo.
Figure 10-4 shows the simulation version of this model. The controller
algorithm (Fuel Rate Controller subsystem) is implemented as a library block.
Simulated inputs and outputs to and from the controller are entirely
independent of any hardware target to which the model might eventually be
deployed.

10 Developing Device Drivers for Embedded Targets

10-42

Figure 10-4: Multiple-Model Approach: Plant Model for Simulation

Figure 10-4 shows a separate version of the model that is specifically targeted
for code generation for the Motorola MPC555. This model contains the same
controller block, but the controller is connected to MPC555 I/O device drivers
(Analog In and PWM Out). The model also contains blocks required for correct
operation on the target hardware. These include data type conversion, scaling,
and normalization blocks, and an MPC555 Resource Configuration block.

Figure 10-5: Multiple-Model Approach: Code Generation Model

Device Drivers in Simulation

10-43

The drivers shown are supplied with the Embedded Target for the Motorola
MPC555. Code generation could be retargeted to another processor relatively
simply by replacing the driver blocks, for example with drivers from the
Embedded Target for the Motorola HC12.

The multiple-model approach can become problematic if changes are
introduced in one model without changing the other. In the example shown,
this problem is minimized because the controller algorithm has been extracted
into a library block that is used in both models. (An alternative would be to
implement the controller as a separate model, and reference it with a Model
block.) Also, the simulation and code generation models have been bundled into
a project library, together with the common controller, as shown in Figure 10-4.

Figure 10-6: Multiple-Model Approach: Project Library

10 Developing Device Drivers for Embedded Targets

10-44

Advantages of the multiple-model approach include:

• There is no need to implement special simulation behaviors (such as use of
simulation-only pass-through ports) in the device driver blocks. Real-world
scaling and signal conditioning functions can be confined to the code
generation model, and omitted from the simulation model.

• Conceptual clarity: Each model operates in a single mode (either simulation
or code generation), but reuses components. The purpose of each model is
clear to users. In addition, since device driver blocks are not instrumented
with pass-through ports, their input/output functions are easier for users to
understand.

• Any existing driver can be used without modification in the code generation
model.

• Users are free to develop their plant and controller algorithms, without
concern over hard-coded pass-through behavior of driver blocks.

• Increased flexibility for the end user: Code generation can be re-targeted to
different processors by replacing the driver blocks.

• Optimal code generation: Avoids inefficiencies that can occur in code
generation when using a single-model approach.

Single-Model Approach
The single-model approach employs the same model for simulation and for code
generation. Traditional input simulation drivers generate a nominal value
(usually 0), or simply do nothing. Traditional output simulation drivers act as
sinks and can often be implemented as stubs.

If you need your drivers to play an active role in a closed-loop simulation, you
can implement pass-through behavior in your simulation drivers.
Pass-through is an option that lets you provide an output signal from your
drivers during simulation. In the simplest case, a pass-through device driver
block behaves like a “wire,” passing its input signal straight through to the
output, without any processing. It is also possible to apply scaling or saturation
or dynamics processing to the signal as it passes through the block.

Pass-through device drivers resemble traditional device drivers in that the
driver behaves differently in simulation than it does when executed on target
hardware. However, unlike a traditional simulation driver, a pass-through
driver receives and outputs a signal that is significant during simulation.

Device Drivers in Simulation

10-45

The following sections describe several approaches to implementation of
pass-through behavior device drivers, including possible inefficiencies that
may occur in generated code.

It is assumed that the device drivers discussed below are functioning within a
subsystem (for example, a controller subsystem in a plant/controller model)
and that subsystem code is generated with the right-click Build Subsystem...
menu option.

Coding Pass-Through Behavior in mdlOutputs
A “traditional” approach implementing pass-through behavior in a simulation
driver is to code the pass-through functionality directly into the mdlOutputs
function of the driver S-function. This is the approach taken in the ADC_examp
driver. See “mdlOutputs” on page 10-13 for a listing and discussion of the code.

Using the Environment Controller Block for Pass-Through
The Environment Controller block (included in the Simulink Signal Routing
block library) provides a simple way to implement pass-through drivers. The
Environment Controller has two inputs, labeled Sim and RTW, and a single
output.

Figure 10-7: Environment Controller Block

When a simulation is running, the Environment Controller block routes the
Sim input signal to the output. During code generation, the block generates
code that effectively routes the RTW input signal to the output.

You can implement a pass-through driver by creating a subsystem like that
shown in Figure 10-8. The subsystem contains an S-function device driver
block (for an input device such as an ADC), and an Environment Controller
block that implements pass-through behavior.

10 Developing Device Drivers for Embedded Targets

10-46

Figure 10-8: Subsystem Implements Pass-Through Logic with Environment
Controller

When the model containing this subsystem is in code generation state, the
device driver block connected to the RTW input is active, and the path connecting
the Sim input to the Environment Controller block output port is effectively
dead. This path is removed from the generated code by the Real-Time
Workshop dead-path elimination optimization.

When the model is in simulation state, the path from the RTW input is turned
off. The path from the Sim input to the output becomes active. This bypasses
the device driver block. In this case, the subsystem behaves as though it is a
unity gain, passing signals through without change.

Disadvantages of the Environment Controller Block for Pass-Through. When using the
Environment Controller block approach to pass-through, a number of
inefficiencies can arise in generated code:

• A Switch block underlies the Environment Controller block. In code
generation, it is desirable to optimize the Switch block (and any blocks on the
unused Switch input) out of the code. This optimization requires that you
turn on both the Block Reduction and Inline Parameters options. These
options may not be suitable for your application (for example, if you require
all parameters to be tunable).

• If the driver subsystem is built with the right-click Build Subsystem... menu
option, storage for inputs and outputs to and from the subsystem is declared
in the containing model’s external input (rtU) and output (rtY) structures.

For example, in the subsystem shown in Figure 10-8, storage would be
allocated for the port labeled Simulation_Input.

• Output (rtY) assignments are generated in the model_step function.

Device Drivers in Simulation

10-47

Using a Configurable Subsystem Block for Pass-Through
Another way to implement a pass-through feature is to use a Configurable
Subsystem block that includes logic to select either a simulation or code
generation version of a device driver.

To do this, a library is constructed, containing both versions of the driver and
a master Configurable Subsystem block. The figure below shows a library
containing two versions of an ADC driver block:

• The Simulation block has both an input and an output port; its mdlOutputs
function simply copies the input to the output.

• The CodeGeneration block has only an output port.

The block labeled ADC is a Configurable Subsystem block that is configured to
select either Simulation or CodeGeneration.

Rather than using the conventional manual selection method (the
Configurable Subsystem’s Block Choice context menu), the ADC Configurable
Subsystem block has mask initialization code that makes the selection
automatically, depending on whether the model is in simulation or code
generation mode. The mask initialization code is listed below.

path = rtwenvironmentmode(bdroot);
cssblk = gcb;
if path

disp('Taking simulation path')
set_param(cssblk,'BlockChoice','Simulation');

else
disp('Taking rtw path')
set_param(cssblk,'BlockChoice','CodeGeneration');

end
disp(get_param(cssblk,'BlockChoice'))

10 Developing Device Drivers for Embedded Targets

10-48

The following block diagram shows a subsystem that includes both the ADC
Configurable Subsystem block functioning as an input driver, and a similar
Configurable Subsystem block (PWM) functioning as an output driver.

Disadvantages of the Configurable Subsystem Block for Pass-Through. When using the
Configurable Subsystem block approach to pass-through, a number of
inefficiencies can arise in generated code:

• If the driver subsystem is built with the right-click Build Subsystem... menu
option, storage for inputs and outputs to and from the subsystem is declared
in the model’s external input (rtU) and output (rtY) structures.

• Output (rtY) assignments are generated in the model_step function. These
can be eliminated by turning on the Inline Parameters option, but inlining
parameters may not be suitable for your application.

Index-1

Index

B
build process

COM automation of 9-9
flowchart 3-9
interfacing to development tools

integrated development environments 9-4
make utilities 9-3

passing information in 3-16
phases of 3-8

C
code generation

TLC variables for 5-7
Configuration Parameters dialog box 5-19
custom target

components of 3-2
application 3-3
code 3-3
control files 3-5
device drivers 3-5
interrupt service routines 3-4
main program 3-4
run-time interface 3-3

purpose of 2-2
custom target configuration

tutorial 5-35

D
development environments

supporting multiple 5-33
device driver blocks

building 10-22
implemening as S-functions 10-2
in simulation 10-41

multiple-model approach 10-41

pass-through behavior 10-44
inlined 10-23

example 10-24
mdlRTW function in 10-30
when to inline 10-3

noninlined 10-6
required defines and includes 10-7
required functions 10-8

displaying target options 5-25

H
hook files

STF_make_rtw_hook 4-12
STF_wrap_make_cmd_hook 4-12

I
interrupt service routine (ISR) 3-4

M
make command 6-6
MATLAB application data 3-17
mdlRTW function 10-30
Model referencing, support for 7-1

R
recommended target features 2-5
rtwgensettings structure 5-16
rtwoptions structure

callbacks in 5-15
example of 5-11
fields in 5-13
overview of 5-10

Index

Index-2

S
S-function Builder

implementing device drivers with 10-30
Start button menu

info.xml file for 4-15
system target file (STF)

customization techniques 5-28
defining target options in 5-9
header comments section 5-5
location of 5-3
naming conventions for 5-3
overview of 5-2
Release 14 compatibility issues 5-19

callback conversion API 5-20
callbacks 5-19
target options display 5-25
target options inheritance 5-23

RTW_OPTIONS section 5-9
rtwgensettings structure 5-16
structure of 5-4
target options inheritance mechanism 5-32
TLC entry point in 5-8
TLC variables section 5-7

system target file creation
tutorial 5-35

T
target directories

blocks directory 4-6
central directory 4-6
development tool support files in 4-8
for common source files 4-9
for target preferences classes 4-9
location on MATLAB path 4-4
naming conventions 4-3
structure of 4-4

target root 3-2
target root directory 4-6

target files
main.c 4-11
naming conventions 4-3
system target file (STF) 4-10
target settings file 4-11
template makefile (TMF) 4-10

Target Language Compiler
code generation variables 5-7

target options inheritance 5-23
mechanism for 5-32

target preferences
class methods 8-9
classes 8-2
creating preferences class 8-4
in build process 8-13
introduction to 8-2
objects 8-2
setup window 8-11
visibility in Start menu 8-11

target root directory 3-2
target types

baseline 2-3
cosimulation 2-4
turnkey 2-3

template makefile
structure of 6-2
tokens 6-2

tokens 6-2
tutorials

creating custom target configuration 5-35

	Introduction
	Prerequisites and Related Documentation
	What You Need to Know
	Related Documentation
	Embedded Target Implementations to Study

	Overview of Embedded Target Development
	Introduction
	Types of Targets
	Recommended Features for Embedded Targets

	Target Development Mechanics
	Components of a Custom Target
	Code Components
	Control Files

	Understanding and Using the Build Process
	Build Process Phases and Information Passing
	Build Process Flowchart
	Additional Information Passing Techniques

	Target Directories, Paths, and Files
	Introduction
	Directory and File Naming Conventions
	Target Directory Structure and MATLAB Path
	Adding Target Directories to the MATLAB Path
	Location of Target Directories

	Target Directories and Files
	Target Root Directory (mytarget)
	Target Directory (mytarget/mytarget)
	Target Block Directory (mytarget/blocks)
	Development Tools Directory (mytarget/dev_tool1, mytarget/dev_tool2)
	Target Preferences Directory (mytarget/mytarget/@mytarget)
	Target Source Code Directory (mytarget/src)

	Files in the Target Directory
	Additional Directories and Files for Externally Developed Targets

	System Target Files
	Introduction
	System Target File Naming and Location Conventions
	System Target File Structure
	Header Comments
	TLC Configuration Variables
	TLC Program Entry Point and Related %includes
	RTW_OPTIONS Section
	rtwgensettings Structure
	Additional Code Generation Options
	Model Reference Considerations

	Defining and Displaying Custom Target Options
	Tips and Techniques for Customizing Your STF
	Required and Recommended %includes
	Inherited Target Options
	Supporting Multiple Development Environments

	Tutorial: Creating a Custom Target Configuration
	my_ert_target Overview
	Creating Target Directories
	Create ERT-Based STF
	Create ERT-Based TMF
	Create Test Model and S-Function
	Verify Target Operation

	Template Makefiles
	Template Makefiles and Tokens
	Template Makefile Tokens

	The make Command
	Structure of the Template Makefile
	Customizing and Creating Template Makefiles
	Setting Up a Template Makefile
	Using Macros and Pattern Matching Expressions in a Template Makefile
	Using rtwmakecfg Files to Customize the Makefile
	Supporting Continuous Time in Custom Targets
	Model Reference Considerations
	Generating Make Commands for Nondefault Compilers

	Supporting Model Referencing
	Overview
	System Target File Modifications
	Template Makefile Modifications
	Hook File Modifications
	Supporting the Shared Utilities Directory in the Build Process

	Using Target Preferences
	Introduction to Target Preferences
	Target Preferences Classes, Objects, and Properties

	Creating Your Target Preferences Class
	Target Preferences Class Methods
	Making Target Preferences Available to the End User
	Using Target Preferences in the Build Process
	Accessing Target Preference Data from MATLAB
	Accessing Target Preference Data from TLC

	Interfacing to Development Tools
	Introduction
	The Makefile Approach
	Interfacing to an Integrated Development Environment
	Generating a CPP_REQ_DEFINES Header File
	Interfacing to the CodeWarrior IDE

	Developing Device Drivers for Embedded Targets
	Introduction
	Related Documentation
	Tradeoffs in Device Driver Development
	An Example Device Driver

	Writing a Device Driver C-MEX S-Function
	Creating a User Interface for Your Driver
	Building the MEX-File and the Driver Block
	Inlining the S-Function Device Driver
	Code Components
	Inlined Device Driver Operations
	Inlining the Example ADC Driver

	Creating Device Drivers with the S-Function Builder
	Example Device Driver Specification
	Building the MEX-File
	Binding the MEX-File to an S-Function Block
	Masking the Block
	Customizing Driver Code Generation

	Device Drivers in Simulation
	Multiple-Model Approach
	Single-Model Approach

	Index���

